Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPrint all Semi-Prime Numbers less than or equal to N

Print all Semi-Prime Numbers less than or equal to N

Given an integer N, the task is to print all the semi-prime numbers ? N.
A semi-prime number is an integer that can be expressed as a product of two distinct prime numbers. 
For example, 15 = 3 * 5 is a semi-prime number but 9 = 3 * 3 is not.

Examples: 

Input: N = 20 
Output: 6 10 14 15

Input: N = 50 
Output: 6 10 14 15 21 22 26 33 34 35 38 39 46 

Prerequisites:  

Approach: For every number < N, count the number of prime factors it has. If the number of prime factors is 2 then the number is a semi-prime number as all the semi-prime numbers have only 2 prime factors.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to create Sieve for Semi Prime Numbers
vector<int> createSemiPrimeSieve(int n)
{
    int v[n + 1];
 
    // This array will initially store the indexes
    // After performing below operations if any
    // element of array becomes 1 this means
    // that the given index is a semi-prime number
 
    // Storing indices in each element of vector
    for (int i = 1; i <= n; i++)
        v[i] = i;
 
    int countDivision[n + 1];
 
    for (int i = 0; i < n + 1; i++)
        countDivision[i] = 2;
 
    // This array will initially be initialized by 2 and
    // will just count the divisions of a number
    // As a semiprime number has only 2 prime factors
    // which means after dividing by the 2 prime numbers
    // if the index countDivision[x] = 0 and v[x] = 1
    // this means that x is a semiprime number
 
    // If number a is prime then its
    // countDivision[a] = 2 and v[a] = a
 
    for (int i = 2; i <= n; i++) {
 
        // If v[i] != i this means that it is
        // not a prime number as it contains
        // a divisor which has already divided it
        // same reason if countDivision[i] != 2
 
        if (v[i] == i && countDivision[i] == 2) {
 
            // j goes for each factor of i
            for (int j = 2 * i; j <= n; j += i) {
                if (countDivision[j] > 0) {
 
                    // Dividing the number by i
                    // and storing the dividend
                    v[j] = v[j] / i;
 
                    // Decreasing the countDivision
                    countDivision[j]--;
                }
            }
        }
    }
 
    // A new vector to store all Semi Primes
    vector<int> res;
 
    for (int i = 2; i <= n; i++) {
 
        // If a number becomes one and
        // its countDivision becomes 0
        // it means the number has
        // two prime divisors
        if (v[i] == 1 && countDivision[i] == 0)
            res.push_back(i);
    }
 
    return res;
}
 
// Driver code
int main()
{
    int n = 16;
    vector<int> semiPrime = createSemiPrimeSieve(n);
 
    // Print all semi-primes
    for (int i = 0; i < semiPrime.size(); i++)
        cout << semiPrime[i] << " ";
 
    return 0;
}


Java




import java.util.*;
 
// Java implementation of the approach
class GFG
{
 
    // Function to create Sieve for Semi Prime Numbers
    static Vector<Integer> createSemiPrimeSieve(int n)
    {
        int v[] = new int[n + 1];
 
        // This array will initially store the indexes
        // After performing below operations if any
        // element of array becomes 1 this means
        // that the given index is a semi-prime number
        // Storing indices in each element of vector
        for (int i = 1; i <= n; i++)
        {
            v[i] = i;
        }
 
        int countDivision[] = new int[n + 1];
 
        for (int i = 0; i < n + 1; i++)
        {
            countDivision[i] = 2;
        }
 
        // This array will initially be initialized by 2 and
        // will just count the divisions of a number
        // As a semiprime number has only 2 prime factors
        // which means after dividing by the 2 prime numbers
        // if the index countDivision[x] = 0 and v[x] = 1
        // this means that x is a semiprime number
        // If number a is prime then its
        // countDivision[a] = 2 and v[a] = a
        for (int i = 2; i <= n; i++)
        {
 
            // If v[i] != i this means that it is
            // not a prime number as it contains
            // a divisor which has already divided it
            // same reason if countDivision[i] != 2
            if (v[i] == i && countDivision[i] == 2)
            {
 
                // j goes for each factor of i
                for (int j = 2 * i; j <= n; j += i)
                {
                    if (countDivision[j] > 0)
                    {
 
                        // Dividing the number by i
                        // and storing the dividend
                        v[j] = v[j] / i;
 
                        // Decreasing the countDivision
                        countDivision[j]--;
                    }
                }
            }
        }
 
        // A new vector to store all Semi Primes
        Vector<Integer> res = new Vector<>();
 
        for (int i = 2; i <= n; i++)
        {
 
            // If a number becomes one and
            // its countDivision becomes 0
            // it means the number has
            // two prime divisors
            if (v[i] == 1 && countDivision[i] == 0) {
                res.add(i);
            }
        }
 
        return res;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 16;
        Vector<Integer> semiPrime = createSemiPrimeSieve(n);
 
        // Print all semi-primes
        for (int i = 0; i < semiPrime.size(); i++)
        {
            System.out.print(semiPrime.get(i) + " ");
        }
    }
}
 
/* This code contributed by PrinciRaj1992 */


Python3




# Python 3 implementation of the approach
 
# Function to create Sieve for Semi Prime Numbers
def createSemiPrimeSieve(n):
    v = [0 for i in range(n + 1)]
 
    # This array will initially store the indexes
    # After performing below operations if any
    # element of array becomes 1 this means
    # that the given index is a semi-prime number
 
    # Storing indices in each element of vector
    for i in range(1, n + 1):
        v[i] = i
 
    countDivision = [0 for i in range(n + 1)]
 
    for i in range(n + 1):
        countDivision[i] = 2
 
    # This array will initially be initialized by 2 and
    # will just count the divisions of a number
    # As a semiprime number has only 2 prime factors
    # which means after dividing by the 2 prime numbers
    # if the index countDivision[x] = 0 and v[x] = 1
    # this means that x is a semiprime number
 
    # If number a is prime then its
    # countDivision[a] = 2 and v[a] = a
 
    for i in range(2, n + 1, 1):
         
        # If v[i] != i this means that it is
        # not a prime number as it contains
        # a divisor which has already divided it
        # same reason if countDivision[i] != 2
        if (v[i] == i and countDivision[i] == 2):
             
            # j goes for each factor of i
            for j in range(2 * i, n + 1, i):
                if (countDivision[j] > 0):
                     
                    # Dividing the number by i
                    # and storing the dividend
                    v[j] = int(v[j] / i)
 
                    # Decreasing the countDivision
                    countDivision[j] -= 1
                     
    # A new vector to store all Semi Primes
    res = []
 
    for i in range(2, n + 1, 1):
         
        # If a number becomes one and
        # its countDivision becomes 0
        # it means the number has
        # two prime divisors
        if (v[i] == 1 and countDivision[i] == 0):
            res.append(i)
 
    return res
 
# Driver code
if __name__ == '__main__':
    n = 16
    semiPrime = createSemiPrimeSieve(n)
 
    # Print all semi-primes
    for i in range(len(semiPrime)):
        print(semiPrime[i], end = " ")
         
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
using System.Collections;
 
class GFG
{
     
// Function to create Sieve for Semi Prime Numbers
static ArrayList createSemiPrimeSieve(int n)
{
    int[] v = new int[n + 1];
 
    // This array will initially store the indexes
    // After performing below operations if any
    // element of array becomes 1 this means
    // that the given index is a semi-prime number
 
    // Storing indices in each element of vector
    for (int i = 1; i <= n; i++)
        v[i] = i;
 
    int[] countDivision = new int[n + 1];
 
    for (int i = 0; i < n + 1; i++)
        countDivision[i] = 2;
 
    // This array will initially be initialized by 2 and
    // will just count the divisions of a number
    // As a semiprime number has only 2 prime factors
    // which means after dividing by the 2 prime numbers
    // if the index countDivision[x] = 0 and v[x] = 1
    // this means that x is a semiprime number
 
    // If number a is prime then its
    // countDivision[a] = 2 and v[a] = a
 
    for (int i = 2; i <= n; i++)
    {
 
        // If v[i] != i this means that it is
        // not a prime number as it contains
        // a divisor which has already divided it
        // same reason if countDivision[i] != 2
 
        if (v[i] == i && countDivision[i] == 2)
        {
 
            // j goes for each factor of i
            for (int j = 2 * i; j <= n; j += i)
            {
                if (countDivision[j] > 0)
                {
 
                    // Dividing the number by i
                    // and storing the dividend
                    v[j] = v[j] / i;
 
                    // Decreasing the countDivision
                    countDivision[j]--;
                }
            }
        }
    }
 
    // A new vector to store all Semi Primes
    ArrayList res = new ArrayList();
 
    for (int i = 2; i <= n; i++)
    {
 
        // If a number becomes one and
        // its countDivision becomes 0
        // it means the number has
        // two prime divisors
        if (v[i] == 1 && countDivision[i] == 0)
            res.Add(i);
    }
 
    return res;
}
 
// Driver code
static void Main()
{
    int n = 16;
    ArrayList semiPrime = createSemiPrimeSieve(n);
 
    // Print all semi-primes
    for (int i = 0; i < semiPrime.Count; i++)
        Console.Write((int)semiPrime[i]+" ");
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP implementation of the approach
 
// Function to create Sieve for Semi Prime Numbers
function createSemiPrimeSieve($n)
{
    $v = array_fill(0, $n + 1, 0);
 
    // This array will initially store the indexes
    // After performing below operations if any
    // element of array becomes 1 this means
    // that the given index is a semi-prime number
 
    // Storing indices in each element of vector
    for ($i = 1; $i <= $n; $i++)
        $v[$i] = $i;
 
    $countDivision = array_fill(0, $n + 1, 0);
 
    for ($i = 0; $i < $n + 1; $i++)
        $countDivision[$i] = 2;
 
    // This array will initially be initialized by 2 and
    // will just count the divisions of a number
    // As a semiprime number has only 2 prime factors
    // which means after dividing by the 2 prime numbers
    // if the index countDivision[x] = 0 and $v[x] = 1
    // this means that x is a semiprime number
 
    // If number a is prime then its
    // countDivision[a] = 2 and $v[a] = a
 
    for ($i = 2; $i <= $n; $i++)
    {
 
        // If v[i] != i this means that it is
        // not a prime number as it contains
        // a divisor which has already divided it
        // same reason if countDivision[i] != 2
 
        if ($v[$i] == $i && $countDivision[$i] == 2)
        {
 
            // j goes for each factor of i
            for ($j = 2 * $i; $j <= $n; $j += $i)
            {
                if ($countDivision[$j] > 0)
                {
 
                    // Dividing the number by i
                    // and storing the dividend
                    $v[$j] = $v[$j] / $i;
 
                    // Decreasing the countDivision
                    $countDivision[$j]--;
                }
            }
        }
    }
 
    // A new vector to store all Semi Primes
    $res = array();
 
    for ($i = 2; $i <= $n; $i++)
    {
 
        // If a number becomes one and
        // its countDivision becomes 0
        // it means the number has
        // two prime divisors
        if ($v[$i] == 1 && $countDivision[$i] == 0)
            array_push($res, $i);
    }
 
    return $res;
}
 
// Driver code
$n = 16;
$semiPrime= array();
$semiPrime = createSemiPrimeSieve($n);
 
// Print all semi-primes
for ($i = 0; $i < count($semiPrime); $i++)
    echo $semiPrime[$i], " ";
 
// This code is contributed by ihritik
?>


Javascript




<script>
// Javascript implementation of the approach
 
// Function to create Sieve for Semi Prime Numbers
function createSemiPrimeSieve(n)
{
    let v = new Array(n + 1).fill(0);
 
    // This array will initially store the indexes
    // After performing below operations if any
    // element of array becomes 1 this means
    // that the given index is a semi-prime number
 
    // Storing indices in each element of vector
    for (let i = 1; i <= n; i++)
        v[i] = i;
 
    let countDivision = new Array(n + 1).fill(0);
 
    for (let i = 0; i < n + 1; i++)
        countDivision[i] = 2;
 
    // This array will initially be initialized by 2 and
    // will just count the divisions of a number
    // As a semiprime number has only 2 prime factors
    // which means after dividing by the 2 prime numbers
    // if the index countDivision[x] = 0 and v[x] = 1
    // this means that x is a semiprime number
 
    // If number a is prime then its
    // countDivision[a] = 2 and v[a] = a
 
    for (let i = 2; i <= n; i++)
    {
 
        // If v[i] != i this means that it is
        // not a prime number as it contains
        // a divisor which has already divided it
        // same reason if countDivision[i] != 2
 
        if (v[i] == i && countDivision[i] == 2)
        {
 
            // j goes for each factor of i
            for (let j = 2 * i; j <= n; j += i)
            {
                if (countDivision[j] > 0)
                {
 
                    // Dividing the number by i
                    // and storing the dividend
                    v[j] = v[j] / i;
 
                    // Decreasing the countDivision
                    countDivision[j]--;
                }
            }
        }
    }
 
    // A new vector to store all Semi Primes
    let res = new Array();
 
    for (let i = 2; i <= n; i++)
    {
 
        // If a number becomes one and
        // its countDivision becomes 0
        // it means the number has
        // two prime divisors
        if (v[i] == 1 && countDivision[i] == 0)
            res.push(i);
    }
 
    return res;
}
 
// Driver code
let n = 16;
let semiPrime= new Array();
semiPrime = createSemiPrimeSieve(n);
 
// Print all semi-primes
for (let i = 0; i < semiPrime.length; i++)
    document.write(semiPrime[i] + " ");
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output: 

6 10 14 15

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments