Given an integer array arr[] of size N, the task is to print all possible rotations of the array.
Examples:
Input: arr[] = {1, 2, 3, 4}
Output: {1, 2, 3, 4}, {4, 1, 2, 3}, {3, 4, 1, 2}, {2, 3, 4, 1}
Explanation:
Initial arr[] = {1, 2, 3, 4}
After first rotation arr[] = {4, 1, 2, 3}
After second rotation arr[] = {3, 4, 1, 2}
After third rotation arr[] = {2, 3, 4, 1}
After fourth rotation, arr[] returns to its original form.
Input: arr[] = [1]
Output: [1]
Approach 1:
Follow the steps below to solve the problem:
- Generate all possible rotations of the array, by performing a left rotation of the array one by one.
- Print all possible rotations of the array until the same rotation of array is encountered.
Below is the implementation of the above approach :
C++
#include <iostream>
using namespace std;
int arr[10000];
void reverse( int arr[],
int s, int e)
{
while (s < e)
{
int tem = arr[s];
arr[s] = arr[e];
arr[e] = tem;
s = s + 1;
e = e - 1;
}
}
void fun( int arr[], int k)
{
int n = 4 - 1;
int v = n - k;
if (v >= 0)
{
reverse(arr, 0, v);
reverse(arr, v + 1, n);
reverse(arr, 0, n);
}
}
int main()
{
arr[0] = 1;
arr[1] = 2;
arr[2] = 3;
arr[3] = 4;
for ( int i = 0; i < 4; i++)
{
fun(arr, i);
cout << ( "[" );
for ( int j = 0; j < 4; j++)
{
cout << (arr[j]) << ", " ;
}
cout << ( "]" );
}
}
|
Java
class GFG{
static int arr[] = new int [ 10000 ];
public static void reverse( int arr[],
int s, int e)
{
while (s < e)
{
int tem = arr[s];
arr[s] = arr[e];
arr[e] = tem;
s = s + 1 ;
e = e - 1 ;
}
}
public static void fun( int arr[], int k)
{
int n = 4 - 1 ;
int v = n - k;
if (v >= 0 )
{
reverse(arr, 0 , v);
reverse(arr, v + 1 , n);
reverse(arr, 0 , n);
}
}
public static void main(String args[])
{
arr[ 0 ] = 1 ;
arr[ 1 ] = 2 ;
arr[ 2 ] = 3 ;
arr[ 3 ] = 4 ;
for ( int i = 0 ; i < 4 ; i++)
{
fun(arr, i);
System.out.print( "[" );
for ( int j = 0 ; j < 4 ; j++)
{
System.out.print(arr[j] + ", " );
}
System.out.print( "]" );
}
}
}
|
Python
def reverse(arr, s, e):
while s < e:
tem = arr[s]
arr[s] = arr[e]
arr[e] = tem
s = s + 1
e = e - 1
def fun(arr, k):
n = len (arr) - 1
v = n - k
if v> = 0 :
reverse(arr, 0 , v)
reverse(arr, v + 1 , n)
reverse(arr, 0 , n)
return arr
arr = [ 1 , 2 , 3 , 4 ]
for i in range ( 0 , len (arr)):
count = 0
p = fun(arr, i)
print (p, end = " " )
|
C#
using System;
class GFG{
static int []arr = new int [10000];
public static void reverse( int []arr,
int s, int e)
{
while (s < e)
{
int tem = arr[s];
arr[s] = arr[e];
arr[e] = tem;
s = s + 1;
e = e - 1;
}
}
public static void fun( int []arr, int k)
{
int n = 4 - 1;
int v = n - k;
if (v >= 0)
{
reverse(arr, 0, v);
reverse(arr, v + 1, n);
reverse(arr, 0, n);
}
}
public static void Main(String []args)
{
arr[0] = 1;
arr[1] = 2;
arr[2] = 3;
arr[3] = 4;
for ( int i = 0; i < 4; i++)
{
fun(arr, i);
Console.Write( "[" );
for ( int j = 0; j < 4; j++)
{
Console.Write(arr[j] + ", " );
}
Console.Write( "]" );
}
}
}
|
Javascript
<script>
arr = Array.from({length: 10000}, (_, i) => 0);
function reverse(arr, s , e)
{
while (s < e)
{
var tem = arr[s];
arr[s] = arr[e];
arr[e] = tem;
s = s + 1;
e = e - 1;
}
}
function fun(arr , k)
{
var n = 4 - 1;
var v = n - k;
if (v >= 0)
{
reverse(arr, 0, v);
reverse(arr, v + 1, n);
reverse(arr, 0, n);
}
}
arr[0] = 1;
arr[1] = 2;
arr[2] = 3;
arr[3] = 4;
for (i = 0; i < 4; i++)
{
fun(arr, i);
document.write( "[" );
for (j = 0; j < 4; j++)
{
document.write(arr[j] + ", " );
}
document.write( "]<br>" );
}
</script>
|
Output
[1, 2, 3, 4] [4, 1, 2, 3] [2, 3, 4, 1] [3, 4, 1, 2]
Time Complexity: O (N2)
Auxiliary Space: O (1), since no extra space has been taken.
Approach 2: Follow the steps below to solve the problem:
- Initialize the original array arr and its size n.
- Create a new array rotatedArr of size 2 * n and copy the elements of arr into it.
- Generate all possible rotations by iterating over i from 0 to n-1 and printing the bracketed sequence of elements from rotatedArr[i] to rotatedArr[i + n – 1].
- Exit the program.
Below is the implementation of the above approach:
C++
#include <iostream>
#include <vector>
int main()
{
std::vector< int > arr = {1, 2, 3, 4};
int n = arr.size();
std::vector< int > rotatedArr(2 * n);
for ( int i = 0; i < n; i++) {
rotatedArr[i] = arr[i];
rotatedArr[i + n] = arr[i];
}
for ( int i = 0; i < n; i++) {
std::cout << "[" ;
for ( int j = i; j < i + n; j++) {
std::cout << rotatedArr[j];
if (j != i + n - 1)
std::cout << " " ;
}
std::cout << "] " ;
}
return 0;
}
|
Java
public class GFG {
public static void main(String[] args) {
int [] arr = { 1 , 2 , 3 , 4 };
int n = arr.length;
int [] rotatedArr = new int [ 2 *n];
for ( int i = 0 ; i < n; i++) {
rotatedArr[i] = arr[i];
rotatedArr[i+n] = arr[i];
}
for ( int i = 0 ; i < n; i++) {
System.out.print( "[" );
for ( int j = i; j < i+n; j++) {
System.out.print(rotatedArr[j]);
if (j != i+n- 1 )
System.out.print( " " );
}
System.out.print( "] " );
}
}
}
|
Python3
arr = [ 1 , 2 , 3 , 4 ]
n = len (arr)
rotatedArr = arr + arr
for i in range (n):
print ( "[" , end = "")
for j in range (i, i + n):
print (rotatedArr[j], end = "")
if j ! = i + n - 1 :
print ( " " , end = "")
print ( "]" , end = " " )
|
C#
using System;
class GFG {
static void Main( string [] args)
{
int [] arr = { 1, 2, 3, 4 };
int n = arr.Length;
int [] rotatedArr = new int [2 * n];
for ( int i = 0; i < n; i++) {
rotatedArr[i] = arr[i];
rotatedArr[i + n] = arr[i];
}
for ( int i = 0; i < n; i++) {
Console.Write( "[" );
for ( int j = i; j < i + n; j++) {
Console.Write(rotatedArr[j]);
if (j != i + n - 1)
Console.Write( " " );
}
Console.Write( "] " );
}
}
}
|
Javascript
function rotateArray(arr) {
const n = arr.length;
const rotatedArr = new Array(2 * n);
for (let i = 0; i < n; i++) {
rotatedArr[i] = arr[i];
rotatedArr[i + n] = arr[i];
}
const allRotations = [];
for (let i = 0; i < n; i++) {
let rotation = [];
for (let j = i; j < i + n; j++) {
rotation.push(rotatedArr[j]);
}
allRotations.push(rotation);
}
return allRotations;
}
const arr = [1, 2, 3, 4];
const result = rotateArray(arr);
result.forEach(rotation => {
console.log( '[ ' + rotation.join( ' ' ) + ' ]' );
});
|
Output
[1 2 3 4] [2 3 4 1] [3 4 1 2] [4 1 2 3]
Time Complexity: O(N2)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!