Friday, December 27, 2024
Google search engine
HomeData Modelling & AIPrint all possible paths from top left to bottom right in matrix

Print all possible paths from top left to bottom right in matrix

Given a 2D matrix of dimension m✕n, the task is to print all the possible paths from the top left corner to the bottom right corner in a 2D matrix with the constraints that from each cell you can either move to right or down only.

Examples : 

Input: [[1,2,3],
[4,5,6]]
Output: [[1,4,5,6],
[1,2,5,6],
[1,2,3,6]]

Input: [[1,2],
[3,4]]
Output: [[1,2,4],
[1,3,4]]

Print all possible paths from top left to bottom right in matrix using Backtracking

Explore all the possible paths from a current cell using recursion and backtracking to reach bottom right cell.

  • Base cases: Check If the bottom right cell, print the current path.
  • Boundary cases: In case in we reach out of the matrix, return from it.
  • Otherwise, Include the current cell in the path
  • Make two recursive call:
    • Move right in the matrix
    • Move down in the matrix
  • Backtrack: Remove the current cell from the current path

Implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// To store the matrix dimension
int M, N;
 
// Function to print the path taken to reach destination
void printPath(vector<int>& path)
{
    for (int i : path) {
        cout << i << ", ";
    }
    cout << endl;
}
 
// Function to find all possible path in matrix from top
// left cell to bottom right cell
void findPaths(vector<vector<int> >& arr, vector<int>& path,
               int i, int j)
{
 
    // if the bottom right cell, print the path
    if (i == M - 1 && j == N - 1) {
        path.push_back(arr[i][j]);
        printPath(path);
        path.pop_back();
        return;
    }
 
    // Boundary cases: In case in we reach out of the matrix
    if (i < 0 && i >= M && j < 0 && j >= N) {
        return;
    }
 
    // Include the current cell in the path
    path.push_back(arr[i][j]);
 
    // Move right in the matrix
    if (j + 1 < N) {
        findPaths(arr, path, i, j + 1);
    }
 
    // Move down in the matrix
    if (i + 1 < M) {
        findPaths(arr, path, i + 1, j);
    }
 
    // Backtrack: Remove the current cell from the current
    // path
    path.pop_back();
}
 
// Driver code
int main()
{
    // Input matrix
    vector<vector<int> > arr
        = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
    // To store the path
    vector<int> path;
 
    // Starting cell `(0, 0)` cell
    int i = 0, j = 0;
 
    M = arr.size();
    N = arr[0].size();
 
    // Function call
    findPaths(arr, path, i, j);
 
    return 0;
}


Java




import java.util.ArrayList;
import java.util.List;
 
public class MatrixPaths {
    // To store the matrix dimensions
    static int M, N;
 
    // Function to print the path taken to reach the destination
    static void printPath(List<Integer> path) {
        for (int i : path) {
            System.out.print(i + ", ");
        }
        System.out.println();
    }
 
    // Function to find all possible paths in the matrix from the top-left cell to the bottom-right cell
    static void findPaths(int[][] arr, List<Integer> path, int i, int j) {
        // If it's the bottom-right cell, print the path
        if (i == M - 1 && j == N - 1) {
            path.add(arr[i][j]);
            printPath(path);
            path.remove(path.size() - 1);
            return;
        }
 
        // Boundary cases: Check if we are out of the matrix
        if (i < 0 || i >= M || j < 0 || j >= N) {
            return;
        }
 
        // Include the current cell in the path
        path.add(arr[i][j]);
 
        // Move right in the matrix
        if (j + 1 < N) {
            findPaths(arr, path, i, j + 1);
        }
 
        // Move down in the matrix
        if (i + 1 < M) {
            findPaths(arr, path, i + 1, j);
        }
 
        // Backtrack: Remove the current cell from the current path
        path.remove(path.size() - 1);
    }
 
    // Driver code
    public static void main(String[] args) {
        // Input matrix
        int[][] arr = {
            {1, 2, 3},
            {4, 5, 6},
            {7, 8, 9}
        };
 
        // To store the path
        List<Integer> path = new ArrayList<>();
 
        // Starting cell (0, 0)
        int i = 0, j = 0;
 
        M = arr.length;
        N = arr[0].length;
 
        // Function call
        findPaths(arr, path, i, j);
    }
}
 
// This code is contributed by shivamgupta310570


Python3




# Function to print the path taken to reach destination
def printPath(path):
    for i in path:
        print(i, end=", ")
    print()
 
# Function to find all possible paths in a matrix from the top-left cell to the bottom-right cell
def findPaths(arr, path, i, j):
    global M, N
 
    # If the bottom-right cell is reached, print the path
    if i == M - 1 and j == N - 1:
        path.append(arr[i][j])
        printPath(path)
        path.pop()
        return
 
    # Boundary cases: Check if we are out of the matrix
    if i < 0 or i >= M or j < 0 or j >= N:
        return
 
    # Include the current cell in the path
    path.append(arr[i][j])
 
    # Move right in the matrix
    if j + 1 < N:
        findPaths(arr, path, i, j + 1)
 
    # Move down in the matrix
    if i + 1 < M:
        findPaths(arr, path, i + 1, j)
 
    # Backtrack: Remove the current cell from the current path
    path.pop()
 
# Driver code
if __name__ == "__main__":
    # Input matrix
    arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
 
    # To store the path
    path = []
 
    # Starting cell (0, 0)
    i, j = 0, 0
 
    M = len(arr)
    N = len(arr[0])
 
    # Function call
    findPaths(arr, path, i, j)


C#




using System;
using System.Collections.Generic;
 
class Program
{
    // To store the matrix dimension
    static int M, N;
 
    // Function to print the path taken to reach the destination
    static void PrintPath(List<int> path)
    {
        foreach (int i in path)
        {
            Console.Write(i + ", ");
        }
        Console.WriteLine();
    }
 
    // Function to find all possible paths in the matrix from the top-left cell to the bottom-right cell
    static void FindPaths(int[][] arr, List<int> path, int i, int j)
    {
        // If the bottom right cell is reached, print the path
        if (i == M - 1 && j == N - 1)
        {
            path.Add(arr[i][j]);
            PrintPath(path);
            path.RemoveAt(path.Count - 1);
            return;
        }
 
        // Boundary cases: In case we reach outside of the matrix
        if (i < 0 || i >= M || j < 0 || j >= N)
        {
            return;
        }
 
        // Include the current cell in the path
        path.Add(arr[i][j]);
 
        // Move right in the matrix
        if (j + 1 < N)
        {
            FindPaths(arr, path, i, j + 1);
        }
 
        // Move down in the matrix
        if (i + 1 < M)
        {
            FindPaths(arr, path, i + 1, j);
        }
 
        // Backtrack: Remove the current cell from the current path
        path.RemoveAt(path.Count - 1);
    }
 
    // Driver code
    static void Main(string[] args)
    {
        // Input matrix
        int[][] arr = {
            new int[] { 1, 2, 3 },
            new int[] { 4, 5, 6 },
            new int[] { 7, 8, 9 }
        };
 
        // To store the path
        List<int> path = new List<int>();
 
        // Starting cell `(0, 0)` cell
        int i = 0, j = 0;
 
        M = arr.Length;
        N = arr[0].Length;
 
        // Function call
        FindPaths(arr, path, i, j);
    }
}
// This code is contributed by akshitauprzj3


Output

1, 2, 3, 6, 9, 
1, 2, 5, 6, 9, 
1, 2, 5, 8, 9, 
1, 4, 5, 6, 9, 
1, 4, 5, 8, 9, 
1, 4, 7, 8, 9, 






Time Complexity : O(2^(N*M))
Auxiliary space : O(N + M), where M and N are dimension of matrix.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments