Monday, January 13, 2025
Google search engine
HomeData Modelling & AIPrint all possible joints of a Trie constructed from a given list...

Print all possible joints of a Trie constructed from a given list of strings

Given a set of strings str, the task is to print all the joints of the Trie constructed from the given set of strings.

Joints of a Trie is the nodes in a trie that have more than one child. 

Examples: 

Input:
str = {"cat", "there", "caller",
       "their", "calling"}
Output: l, a, e
Explanation:
        root
       /     \    
      c       t     
      |       |     
      a       h     
    / |       |     
   t  l       e
      |       | \
      l       i   r
      | \     |   |
      e  i    r   e
      |  |
      r  n
      |
      g 

Input:
str = {"Candy", "cat",
       "Caller", "calling"}
Output: l, a
Explanation:
       root
        |    
        c   
        |   
        a        
     /  | \        
    l   n  t       
    |   |       
    l   d       
   | \  |      
   e  i y      
   |  |
   r  n
      |
      g

Approach: 
Follow the steps given below to solve the problem: 

  • Traverse the Trie, and take a currChild variable as zero.
  • Increment the currChild by 1, when the current node has a child and while returning from current node check if currChild is greater than 1 or not. If so, print this character or joint. Otherwise, skip to next character.

Below is the implementation of the above approach: 

C++




// C++ program to print all the
// joints of a Trie constructed
// from a given set of strings
 
#include <bits/stdc++.h>
using namespace std;
#define CHILDREN 26
#define MAX 100
 
// Trie node
struct trie {
    trie* child[CHILDREN];
    bool endOfWord;
};
 
// Function will return the
// new node(initialized to NULLs)
trie* createNode()
{
    trie* temp = new trie();
    temp->endOfWord = false;
    for (int i = 0; i < CHILDREN; i++) {
        temp->child[i] = NULL;
    }
    return temp;
}
 
// Function will insert the
// string in a trie recursively
void insertRecursively(trie* itr,
                       string str, int i)
{
    if (i < str.length()) {
        int index = str[i] - 'a';
        if (itr->child[index] == NULL) {
            // Create a new node
            itr->child[index] = createNode();
        }
 
        // Recursive call for insertion
        // of string
        insertRecursively(itr->child[index],
                          str, i + 1);
    }
 
    else {
        // Make the endOfWord true
        // which represents
        // the end of string
        itr->endOfWord = true;
    }
}
 
// Function call to insert a string
void insert(trie* itr, string str)
{
    // Function call with
    // necessary arguments
    insertRecursively(itr, str, 0);
}
 
// Function to check whether the
// node is leaf or not
bool isLeafNode(trie* root)
{
    return root->endOfWord != false;
}
 
// Function to display the Joints of trie
void display(trie* root, trie* itr,
             char str[], int level)
{
    // Count current child
    int currChild = 0;
 
    for (int i = 0; i < CHILDREN; i++)
 
    {
        // Check for NON NULL child is found
        // add parent key to str and
        // call the display function
        // recursively for child node
        if (itr->child[i]) {
            str[level] = i + 'a';
            display(root, itr->child[i],
                    str, level + 1);
            currChild++;
        }
    }
 
    // Print character if it has more
    // than 1 child
    if (currChild > 1 && itr != root) {
        cout << str[level - 1] << endl;
    }
}
 
// Function call for displaying Joint
void displayJoint(trie* root)
{
    int level = 0;
    char str[MAX];
    display(root, root, str, level);
}
 
// Driver code
int main()
{
    trie* root = createNode();
    vector<string> s = { "geek", "geeky",
                         "neveropen", "gel" };
 
    for (string str : s) {
        insert(root, str);
    }
 
    displayJoint(root);
 
    return 0;
}


Java




// Java program to print all the
// joints of a Trie constructed
// from a given set of Strings
import java.util.*;
 
class GFG{
static final int CHILDREN = 26;
static final int MAX = 100;
 
// Trie node
static class trie
{
    trie []child = new trie[CHILDREN];
    boolean endOfWord;
};
 
// Function will return the
// new node(initialized to nulls)
static trie createNode()
{
    trie temp = new trie();
    temp.endOfWord = false;
    for (int i = 0; i < CHILDREN; i++)
    {
        temp.child[i] = null;
    }
    return temp;
}
 
// Function will insert the
// String in a trie recursively
static void insertRecursively(trie itr,
                            String str, int i)
{
    if (i < str.length())
    {
        int index = str.charAt(i) - 'a';
        if (itr.child[index] == null)
        {
            // Create a new node
            itr.child[index] = createNode();
        }
 
        // Recursive call for insertion
        // of String
        insertRecursively(itr.child[index],
                          str, i + 1);
    }
 
    else
    {
        // Make the endOfWord true
        // which represents
        // the end of String
        itr.endOfWord = true;
    }
}
 
// Function call to insert a String
static void insert(trie itr, String str)
{
    // Function call with
    // necessary arguments
    insertRecursively(itr, str, 0);
}
 
// Function to check whether the
// node is leaf or not
static boolean isLeafNode(trie root)
{
    return root.endOfWord != false;
}
 
// Function to display the Joints of trie
static void display(trie root, trie itr,
                    char str[], int level)
{
    // Count current child
    int currChild = 0;
 
    for (int i = 0; i < CHILDREN; i++)
    {
        // Check for NON null child is found
        // add parent key to str and
        // call the display function
        // recursively for child node
        if (itr.child[i] != null)
        {
            str[level] = (char) (i + 'a');
            display(root, itr.child[i],
                    str, level + 1);
            currChild++;
        }
    }
 
    // Print character if it has more
    // than 1 child
    if (currChild > 1 && itr != root)
    {
        System.out.print(str[level - 1] + "\n");
    }
}
 
// Function call for displaying Joint
static void displayJoint(trie root)
{
    int level = 0;
    char []str = new char[MAX];
    display(root, root, str, level);
}
 
// Driver code
public static void main(String[] args)
{
    trie root = createNode();
    String []s = { "geek", "geeky",
                   "neveropen", "gel" };
 
    for (String str : s)
    {
        insert(root, str);
    }
 
    displayJoint(root);
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program to traverse in bottom up manner
CHILDREN = 26
MAX = 100
 
# Trie node
class trie:
 
    def __init__(self):
        self.child = [None for i in range(CHILDREN)]
         
        # endOfWord is true if the node represents
        # end of a word
        self.endOfWord = False
 
# Function will return the new node(initialized to NULLs)
def createNode():
 
    temp = trie()
    return temp
 
# Function will inert the string in a trie recursively
def insertRecursively(itr, str, i):
 
    if(i < len(str)):
     
        index = ord(str[i]) - ord('a')
         
        if(itr.child[index] == None ):
         
            #Create a new node
            itr.child[index] = createNode();
         
        # Recursive call for insertion of string
        insertRecursively(itr.child[index], str, i + 1);
     
    else:
     
        # Make the endOfWord true which represents
        # the end of string
        itr.endOfWord = True;
     
# Function call to insert a string
def insert(itr, str):
 
    # Function call with necessary arguments
    insertRecursively(itr, str, 0);
  
# Function to check whether the node is leaf or not
def isLeafNode(root):
 
    return root.endOfWord != False;
  
# Function to display the Joints of trie
def display(root, itr, str, level):
 
    # Count current child
    currChild = 0;
     
    for i in range(CHILDREN):
  
        # Check for NON NULL child is found
        # add parent key to str and
        # call the display function
        # recursively for child node
        if (itr.child[i]):
            str[level] = chr(i + ord('a'));
            display(root, itr.child[i],str, level + 1);
            currChild += 1
  
    # Print character if it has more
    # than 1 child
    if (currChild > 1 and itr != root):
        print(str[level - 1])
  
# Function call for displaying Joint
def displayJoint(root):
 
    level = 0;
    str = ['' for i in range(MAX)];
    display(root, root, str, level);
      
# Driver code
if __name__=='__main__':
     
    root = createNode()
    s = ["geek", "geeky", "neveropen", "gel"]
 
    for str in s:   
        insert(root, str);
 
    displayJoint(root)
 
    # This code is contributed by rutvik_56


C#




// C# program to print all the
// joints of a Trie constructed
// from a given set of Strings
using System;
 
class GFG{
     
static readonly int CHILDREN = 26;
static readonly int MAX = 100;
 
// Trie node
class trie
{
    public trie []child = new trie[CHILDREN];
    public bool endOfWord;
};
 
// Function will return the
// new node(initialized to nulls)
static trie createNode()
{
    trie temp = new trie();
    temp.endOfWord = false;
     
    for(int i = 0; i < CHILDREN; i++)
    {
       temp.child[i] = null;
    }
    return temp;
}
 
// Function will insert the
// String in a trie recursively
static void insertRecursively(trie itr,
                              String str, int i)
{
    if (i < str.Length)
    {
        int index = str[i] - 'a';
        if (itr.child[index] == null)
        {
             
            // Create a new node
            itr.child[index] = createNode();
        }
 
        // Recursive call for insertion
        // of String
        insertRecursively(itr.child[index],
                          str, i + 1);
    }
 
    else
    {
         
        // Make the endOfWord true
        // which represents
        // the end of String
        itr.endOfWord = true;
    }
}
 
// Function call to insert a String
static void insert(trie itr, String str)
{
     
    // Function call with
    // necessary arguments
    insertRecursively(itr, str, 0);
}
 
// Function to check whether the
// node is leaf or not
static bool isLeafNode(trie root)
{
    return root.endOfWord != false;
}
 
// Function to display the Joints of trie
static void display(trie root, trie itr,
                    char []str, int level)
{
     
    // Count current child
    int currChild = 0;
 
    for(int i = 0; i < CHILDREN; i++)
    {
        
       // Check for NON null child is found
       // add parent key to str and
       // call the display function
       // recursively for child node
       if (itr.child[i] != null)
       {
           str[level] = (char)(i + 'a');
           display(root, itr.child[i],
                   str, level + 1);
           currChild++;
       }
    }
 
    // Print character if it has more
    // than 1 child
    if (currChild > 1 && itr != root)
    {
        Console.Write(str[level - 1] + "\n");
    }
}
 
// Function call for displaying Joint
static void displayJoint(trie root)
{
    int level = 0;
    char []str = new char[MAX];
    display(root, root, str, level);
}
 
// Driver code
public static void Main(String[] args)
{
    trie root = createNode();
    String []s = { "geek", "geeky",
                   "neveropen", "gel" };
 
    foreach(String str in s)
    {
        insert(root, str);
    }
 
    displayJoint(root);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
    // Javascript program to print all the
    // joints of a Trie constructed
    // from a given set of Strings
     
    let CHILDREN = 26;
    let MAX = 100;
 
    // Trie node
    class trie
    {
        constructor() {
        }
    }
 
    // Function will return the
    // new node(initialized to nulls)
    function createNode(endOfWord)
    {
        let temp = new trie();
        temp.child = new trie(CHILDREN);
        temp.endOfWord = endOfWord;
        for (let i = 0; i < CHILDREN; i++)
        {
            temp.child[i] = null;
        }
        return temp;
    }
 
    // Function will insert the
    // String in a trie recursively
    function insertRecursively(itr, str, i)
    {
        if (i < str.length)
        {
            let index = str[i].charCodeAt() - 'a'.charCodeAt();
            if (itr.child[index] == null)
            {
                // Create a new node
                itr.child[index] = createNode(false);
            }
 
            // Recursive call for insertion
            // of String
            insertRecursively(itr.child[index], str, i + 1);
        }
 
        else
        {
            // Make the endOfWord true
            // which represents
            // the end of String
            itr.endOfWord = true;
        }
    }
 
    // Function call to insert a String
    function insert(itr, str)
    {
        // Function call with
        // necessary arguments
        insertRecursively(itr, str, 0);
    }
 
    // Function to check whether the
    // node is leaf or not
    function isLeafNode(root)
    {
        return root.endOfWord != false;
    }
 
    // Function to display the Joints of trie
    function display(root, itr, str, level)
    {
        // Count current child
        let currChild = 0;
 
        for (let i = 0; i < CHILDREN; i++)
        {
            // Check for NON null child is found
            // add parent key to str and
            // call the display function
            // recursively for child node
            if (itr.child[i] != null)
            {
                str[level] = String.fromCharCode(i + 'a'.charCodeAt());
                display(root, itr.child[i], str, level + 1);
                currChild++;
            }
        }
 
        // Print character if it has more
        // than 1 child
        if (currChild > 1 && itr != root)
        {
            document.write(str[level - 1] + "</br>");
        }
    }
 
    // Function call for displaying Joint
    function displayJoint(root)
    {
        let level = 0;
        let str = new Array(MAX);
        display(root, root, str, level);
    }
     
    let root = createNode(false);
    let s = [ "geek", "geeky", "neveropen", "gel" ];
  
    for (let str = 0; str < s.length; str++)
    {
        insert(root, s[str]);
    }
  
    displayJoint(root);
 
// This code is contributed by mukesh07.
</script>


Output

k
e

Time Complexity:  time complexity of this implementation is O(V + S), where S is the total number of characters in all the strings in the trie. This makes it suitable for tries with a large number of strings and a moderate number of nodes.

Auxiliary Space: The auxiliary Space of this implementation is O(V), where V is the number of nodes in the trie. This is because the trie uses an array of size 26 to store the children of each node, and each node consumes a constant amount of space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments