Given a number n. we need to print all N digit patterns formed by mobile Keypad.
Note: we can move up, down, left, right from any key of mobile keypad, and every pattern contains the unique key.
Examples:
Input : N = 3 Output : all 3 digit Pattern are : 123, 125, 145, 147 236, 214, 258, 256, 254 321, 325, 369, 365 412, 456, 452, 458, 478 and so on ..
idea of this solution is based on the DFS. We pick all keypad keys as a starting digit for N_digit number one by one, after that, we are trying to generate all N digit patterns formed by this key( Using DFS because we can only move either up, left, right, or down from that key).
PrintPattern Function (DFS Function) Add current key to pattern Pattern += Keypad[x][y] .... make current key as visited visited[x][y] = true; ... Print pattern if size of Pattern == N Call DFS for all 4 adjacent keypad key __DFS_function
Below is the implementation of the above idea :
C++
// C++ program to print all n digit patterns // formed by mobile keypad. #include <bits/stdc++.h> using namespace std; // A function to check if a given cell (row, col) // can be included in DFS bool isSafe( int x, int y, bool Visited[][3]) { // row number is in range, column number // is in range and not yet visited return (x >= 0 && x < 4 && y >= 0 && y < 3 && !Visited[x][y]); } // A utility function to do DFS for a mobile Keypad // matrix. It only considers the 4 neighbors as // adjacent vertices and print pattern of size n void DFS( bool visited[][3], int Keypad[][3], int n, string pattern, int x, int y) { // add current number to string pattern.push_back((Keypad[x][y] + '0' )); // print pattern if (pattern.size() == n) { cout << pattern << " " ; return ; } // These arrays are used to get row and // column // numbers of 4 neighbours of a given cell static int row[] = { 0, 1, 0, -1 }; static int col[] = { 1, 0, -1, 0 }; // Mark this cell as visited visited[x][y] = true ; // Recur for all connected neighbours for ( int k = 0; k < 4; k++) if (isSafe(x + row[k], y + col[k], visited) && Keypad[x + row[k]][y + col[k]] != -1) DFS(visited, Keypad, n, pattern, x + row[k], y + col[k]); // unvisited visited[x][y] = false ; pattern.pop_back(); } void patternOfSizeK( int Keypad[][3], int n) { // Make a bool array to mark visited cells. // Initially all cells are unvisited bool visited[4][3]; memset (visited, false , sizeof (visited)); // try to generate all pattern of size n // by making every key of keypad as // starting char of pattern for ( int i = 0; i < 4; i++) for ( int j = 0; j < 3; j++) if (Keypad[i][j] != -1) DFS(visited, Keypad, n, "" , i, j); } // Drive program to test above function. int main() { int Keypad[4][3] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }, { -1, 0, -1 } }; int n = 3; patternOfSizeK(Keypad, n); return 0; } |
Java
// Java program to print all n digit patterns // formed by mobile keypad. public class Main { // A function to check if a given cell (row, col) // can be included in DFS static boolean isSafe( int x, int y, boolean [][] Visited) { // row number is in range, column number // is in range and not yet visited return (x >= 0 && x < 4 && y >= 0 && y < 3 && !Visited[x][y]); } // A utility function to do DFS for a mobile Keypad // matrix. It only considers the 4 neighbors as // adjacent vertices and print pattern of size n static void DFS( boolean [][] visited, int [][] Keypad, int n, String pattern, int x, int y) { // add current number to string pattern = pattern + Integer.toString(Keypad[x][y]); // print pattern if (pattern.length() == n) { System.out.print(pattern + " " ); return ; } // These arrays are used to get row and // column // numbers of 4 neighbours of a given cell int [] row = { 0 , 1 , 0 , - 1 }; int [] col = { 1 , 0 , - 1 , 0 }; // Mark this cell as visited visited[x][y] = true ; // Recur for all connected neighbours for ( int k = 0 ; k < 4 ; k++) if (isSafe(x + row[k], y + col[k], visited) && Keypad[x + row[k]][y + col[k]] != - 1 ) DFS(visited, Keypad, n, pattern, x + row[k], y + col[k]); // unvisited visited[x][y] = false ; pattern = pattern.substring( 0 , pattern.length() - 1 ); } static void patternOfSizeK( int [][] Keypad, int n) { // Make a bool array to mark visited cells. // Initially all cells are unvisited boolean [][] visited = new boolean [ 4 ][ 3 ]; for ( int i = 0 ; i < 4 ; i++) { for ( int j = 0 ; j < 3 ; j++) { visited[i][j] = false ; } } // try to generate all pattern of size n // by making every key of keypad as // starting char of pattern for ( int i = 0 ; i < 4 ; i++) { for ( int j = 0 ; j < 3 ; j++) { if (Keypad[i][j] != - 1 ) DFS(visited, Keypad, n, "" , i, j); } } } // Driver code public static void main(String[] args) { int [][] Keypad = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 }, { - 1 , 0 , - 1 } }; int n = 3 ; patternOfSizeK(Keypad, n); } } // This code is contributed by divyesh072019. |
Python3
# Python3 program to print all n digit patterns # formed by mobile keypad. # A function to check if a given cell # (row, col) can be included in DFS def isSafe(x, y, Visited): # row number is in range, column number # is in range and not yet visited return (x > = 0 and x < 4 and y > = 0 and y < 3 and not Visited[x][y]) # A utility function to do DFS for a mobile Keypad # matrix. It only considers the 4 neighbors as # adjacent vertices and print pattern of size n def DFS(visited, Keypad, n, pattern, x, y): # Add current number to string pattern = pattern + str (Keypad[x][y]) # Print pattern if ( len (pattern) = = n): print (pattern, end = ' ' ) return # These arrays are used to get row and # column # numbers of 4 neighbours of a given cell row = [ 0 , 1 , 0 , - 1 ] col = [ 1 , 0 , - 1 , 0 ] # Mark this cell as visited visited[x][y] = True # Recur for all connected neighbours for k in range ( 0 , 4 ): if (isSafe(x + row[k], y + col[k], visited) and Keypad[x + row[k]][y + col[k]] ! = - 1 ): DFS(visited, Keypad, n, pattern, x + row[k], y + col[k]) # unvisited visited[x][y] = False ; pattern = pattern[: - 1 ] def patternOfSizeK(Keypad, n): # Make a bool array to mark visited cells. # Initially all cells are unvisited visited = [[ False for i in range ( 3 )] for j in range ( 4 )] # Try to generate all pattern of size n # by making every key of keypad as # starting char of pattern for i in range ( 4 ): for j in range ( 3 ): if (Keypad[i][j] ! = - 1 ): DFS(visited, Keypad, n, "", i, j) # Driver code if __name__ = = '__main__' : Keypad = [ [ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ], [ - 1 , 0 , - 1 ] ] n = 3 patternOfSizeK(Keypad, n) # This code is contributed by rutvik_56 |
C#
// C# program to print all n digit patterns // formed by mobile keypad. using System; class GFG { // A function to check if a given cell (row, col) // can be included in DFS static bool isSafe( int x, int y, bool [,] Visited) { // row number is in range, column number // is in range and not yet visited return (x >= 0 && x < 4 && y >= 0 && y < 3 && !Visited[x,y]); } // A utility function to do DFS for a mobile Keypad // matrix. It only considers the 4 neighbors as // adjacent vertices and print pattern of size n static void DFS( bool [,] visited, int [,] Keypad, int n, string pattern, int x, int y) { // add current number to string pattern = pattern + (Keypad[x,y]).ToString(); // print pattern if (pattern.Length == n) { Console.Write(pattern + " " ); return ; } // These arrays are used to get row and // column // numbers of 4 neighbours of a given cell int [] row = { 0, 1, 0, -1 }; int [] col = { 1, 0, -1, 0 }; // Mark this cell as visited visited[x,y] = true ; // Recur for all connected neighbours for ( int k = 0; k < 4; k++) if (isSafe(x + row[k], y + col[k], visited) && Keypad[x + row[k],y + col[k]] != -1) DFS(visited, Keypad, n, pattern, x + row[k], y + col[k]); // unvisited visited[x,y] = false ; pattern = pattern.Substring(0, pattern.Length - 1); } static void patternOfSizeK( int [,] Keypad, int n) { // Make a bool array to mark visited cells. // Initially all cells are unvisited bool [,] visited = new bool [4,3]; for ( int i = 0; i < 4; i++) { for ( int j = 0; j < 3; j++) { visited[i,j] = false ; } } // try to generate all pattern of size n // by making every key of keypad as // starting char of pattern for ( int i = 0; i < 4; i++) { for ( int j = 0; j < 3; j++) { if (Keypad[i,j] != -1) DFS(visited, Keypad, n, "" , i, j); } } } static void Main() { int [,] Keypad = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }, { -1, 0, -1 } }; int n = 3; patternOfSizeK(Keypad, n); } } // This code is contributed by suresh07. |
Javascript
<script> // Javascript program to print all n digit patterns // formed by mobile keypad. // A function to check if a given cell (row, col) // can be included in DFS function isSafe(x, y, Visited) { // row number is in range, column number // is in range and not yet visited return (x >= 0 && x < 4 && y >= 0 && y < 3 && !Visited[x][y]); } // A utility function to do DFS for a mobile Keypad // matrix. It only considers the 4 neighbors as // adjacent vertices and print pattern of size n function DFS(visited, Keypad, n, pattern, x, y) { // add current number to string pattern+=String.fromCharCode(Keypad[x][y] + '0' .charCodeAt(0)); // print pattern if (pattern.length == n) { document.write( pattern + " " ); return ; } // These arrays are used to get row and // column // numbers of 4 neighbours of a given cell var row = [ 0, 1, 0, -1 ]; var col = [ 1, 0, -1, 0 ]; // Mark this cell as visited visited[x][y] = true ; // Recur for all connected neighbours for ( var k = 0; k < 4; k++) if (isSafe(x + row[k], y + col[k], visited) && Keypad[x + row[k]][y + col[k]] != -1) DFS(visited, Keypad, n, pattern, x + row[k], y + col[k]); // unvisited visited[x][y] = false ; pattern = pattern.substring(0,pattern.length-2); } function patternOfSizeK( Keypad, n) { // Make a bool array to mark visited cells. // Initially all cells are unvisited var visited = Array.from(Array(4), ()=>Array(3).fill( false )); // try to generate all pattern of size n // by making every key of keypad as // starting char of pattern for ( var i = 0; i < 4; i++) for ( var j = 0; j < 3; j++) if (Keypad[i][j] != -1) DFS(visited, Keypad, n, "" , i, j); } // Drive program to test above function. var Keypad = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ], [ -1, 0, -1 ] ]; var n = 3; patternOfSizeK(Keypad, n); </script> |
123 125 145 147 236 256 258 254 214 369 365 325 321 456 458 452 478 412 569 563 589 580 587 547 541 523 521 698 658 654 652 632 789 780 785 745 741 896 874 856 854 852 980 987 985 965 963 089 087 085
Time Complexity: O(4n)
Auxiliary Space: O(n), due to the DFS call stack.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!