Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPrint all Longest dividing subsequence in an Array

Print all Longest dividing subsequence in an Array

Given an array arr[] of N integers, the task is to print all the element of Longest Dividing Subsequence formed by the given array. If we have more than one sequence with maximum length then print all of them. Examples:

Input: arr[] = { 2, 11, 16, 12, 36, 60, 71 } 
Output: 2 12 36 2 12 60 
Explanation: There are two subsequence with maximum length 3. 1. 2, 12, 36 2. 2, 12, 60 

Input: arr[] = { 2, 4, 16, 32, 64, 60, 12 }; 
Output: 2 4 16 32 64
 Explanation: There is only one subsequence with maximum length 5. 1. 2 4 16 32 64

Approach:

  1. Declare a 2D array LDS[][] which stores the Longest Dividing Subsequence.
  2. Traverse the given array arr[] and find the longest dividing subsequence till current element by using the approach discussed in this article.
  3. Traverse the given LDS[][] array, and print all the elements of the sequence with maximum length.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include "bits/stdc++.h"
using namespace std;
 
// Function to print LDS[i] element
void printLDS(vector<int>& Max)
{
 
    // Traverse the Max[]
    for (auto& it : Max) {
        cout << it << ' ';
    }
}
 
// Function to construct and print Longest
// Dividing Subsequence
void LongestDividingSeq(int arr[], int N)
{
    // 2D vector for storing sequences
    vector<vector<int> > LDS(N);
 
    // Push the first element to LDS[][]
    LDS[0].push_back(arr[0]);
 
    // Iterate over all element
    for (int i = 1; i < N; i++) {
 
        // Loop for every index till i
        for (int j = 0; j < i; j++) {
 
            // if current elements divides
            // arr[i] and length is greater
            // than the previous index, then
            // insert the current element
            // to the sequences LDS[i]
            if ((arr[i] % arr[j] == 0)
                && (LDS[i].size() < LDS[j].size() + 1))
                LDS[i] = LDS[j];
        }
 
        // L[i] ends with arr[i]
        LDS[i].push_back(arr[i]);
    }
 
    int maxLength = 0;
 
    // LDS stores the sequences till
    // each element of arr[]
    // Traverse the LDS[][] to find the
    // the maximum length
    for (int i = 0; i < N; i++) {
        int x = LDS[i].size();
        maxLength = max(maxLength, x);
    }
 
    // Print all LDS with maximum length
    for (int i = 0; i < N; i++) {
 
        // Find size
        int size = LDS[i].size();
 
        // If size = maxLength
        if (size == maxLength) {
 
            // Print LDS
            printLDS(LDS[i]);
            cout << '\n';
        }
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 11, 16, 12, 36, 60, 71 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    LongestDividingSeq(arr, N);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
    static void printLDS(ArrayList<Integer> Max)
    {
        // Traverse the Max[]
        for (int it : Max) {
            System.out.print(it + " ");
        }
    }
 
    static void LongestDividingSeq(int[] arr, int N)
    {
        // 2D list for storing sequences
        ArrayList<ArrayList<Integer> > LDS
            = new ArrayList<ArrayList<Integer> >();
        for (int i = 0; i <= N; i++) {
            LDS.add(new ArrayList<Integer>());
        }
        LDS.get(0).add(arr[0]);
 
        // Iterate over all element
        for (int i = 1; i < N; i++) {
 
            // Loop for every index till i
            for (int j = 0; j < i; j++) {
 
                // if current elements divides arr[i] and
                // length is greater than the previous
                // index, then insert the current element to
                // the sequences LDS[i]
                if ((arr[i] % arr[j] == 0)
                    && (LDS.get(i).size()
                        < LDS.get(j).size() + 1))
                    LDS.set(i, new ArrayList<Integer>(
                                   LDS.get(j)));
            }
 
            // L[i] ends with arr[i]
            LDS.get(i).add(arr[i]);
        }
 
        int maxLength = 0;
 
        // LDS stores the sequences till each element of
        // arr[] Traverse the LDS[][] to find the the
        // maximum length
        for (int i = 0; i < N; i++) {
            int x = LDS.get(i).size();
            maxLength = Math.max(maxLength, x);
        }
 
        // Print all LDS with maximum length
        for (int i = 0; i < N; i++) {
 
            // Find size
            int size = LDS.get(i).size();
 
            // If size = maxLength
            if (size == maxLength) {
 
                // Print LDS
                printLDS(LDS.get(i));
                System.out.println();
            }
        }
    }
 
    public static void main(String[] args)
    {
        int[] arr = { 2, 11, 16, 12, 36, 60, 71 };
        int N = arr.length;
        LongestDividingSeq(arr, N);
    }
}


Python3




# Python3 program for the above approach
 
# Function to print LDS[i] element
def printLDS(Max):
     
    # Traverse the Max[]
    for it in Max:
        print(it, end = " ")
 
# Function to construct and print
# Longest Dividing Subsequence
def LongestDividingSeq(arr, N):
     
    # 2D vector for storing sequences
    LDS = [[] for i in range(N)]
 
    # Push the first element to LDS[][]
    LDS[0].append(arr[0])
 
    # Iterate over all element
    for i in range(1, N):
         
        # Loop for every index till i
        for j in range(i):
 
            # If current elements divides
            # arr[i] and length is greater
            # than the previous index, then
            # insert the current element
            # to the sequences LDS[i]
            if ((arr[i] % arr[j] == 0) and
                (len(LDS[i]) < len(LDS[j]) + 1)):
                LDS[i] = LDS[j].copy()
 
        # L[i] ends with arr[i]
        LDS[i].append(arr[i])
 
    maxLength = 0
 
    # LDS stores the sequences till
    # each element of arr[]
    # Traverse the LDS[][] to find
    # the maximum length
    for i in range(N):
        x = len(LDS[i])
        maxLength = max(maxLength, x)
 
    # Print all LDS with maximum length
    for i in range(N):
 
        # Find size
        size = len(LDS[i])
 
        # If size = maxLength
        if (size == maxLength):
 
            # Print LDS
            printLDS(LDS[i])
            print()
 
# Driver Code
arr = [ 2, 11, 16, 12, 36, 60, 71 ]
N = len(arr)
 
# Function call
LongestDividingSeq(arr, N);
 
# This code is contributed by ANKITKUMAR34


C#




// C# program to implement above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to print LDS[i] element
  static void printLDS(List<int> Max)
  {
 
    // Traverse the Max[]
    foreach (int it in Max) {
      Console.Write(it + " ");
    }
  }
 
  // Function to construct and print Longest
  // Dividing Subsequence
  static void LongestDividingSeq(int[] arr, int N)
  {
    // 2D vector for storing sequences
    List<List<int>> LDS = new List<List<int>>();
    for(int i = 0 ; i < N ; i++){
      LDS.Add(new List<int>());
    }
 
    // Push the first element to LDS[][]
    LDS[0].Add(arr[0]);
 
    // Iterate over all element
    for (int i = 1 ; i < N ; i++) {
 
      // Loop for every index till i
      for (int j = 0 ; j < i ; j++) {
 
        // if current elements divides
        // arr[i] and length is greater
        // than the previous index, then
        // insert the current element
        // to the sequences LDS[i]
        if ((arr[i] % arr[j] == 0) && (LDS[i].Count < LDS[j].Count + 1)){
          LDS[i] = new List<int>(LDS[j]);
        }
      }
 
      // L[i] ends with arr[i]
      LDS[i].Add(arr[i]);
    }
 
    int maxLength = 0;
 
    // LDS stores the sequences till
    // each element of arr[]
    // Traverse the LDS[][] to find the
    // the maximum length
    for (int i = 0 ; i < N ; i++) {
      int x = LDS[i].Count;
      maxLength = Math.Max(maxLength, x);
    }
 
    // Print all LDS with maximum length
    for (int i = 0 ; i < N ; i++) {
 
      // Find size
      int size = LDS[i].Count;
 
      // If size = maxLength
      if (size == maxLength) {
 
        // Print LDS
        printLDS(LDS[i]);
        Console.WriteLine("");
      }
    }
  }
 
  // Driver code
  public static void Main(string[] args){
 
    int[] arr = new int[]{ 2, 11, 16, 12, 36, 60, 71 };
    int N = arr.Length;
 
    // Function Call
    LongestDividingSeq(arr, N);
 
  }
}
 
// This code is contributed by subhamgoyal2014.


Javascript




function printLDS(Max){
    // Traverse the Max[]
    console.log(Max.join(" "));
}
 
function LongestDividingSeq(arr, n){
 
    // 2D vector for storing sequences
    let LDS = [];
 
    for(let i = 0; i <= n; i++){
        LDS.push([]);
    }
    LDS[0].push(arr[0]);
 
    // Iterate over all element
    for(let i = 1; i < n; i++){
 
        // Loop for every index till i
        for(let j = 0; j < i; j++){
            // If current elements divides
            // arr[i] and lengths is greater
            // than the previous index, then
            // insert the current element
            // to the sequence LDS[i]
            if((arr[i]%arr[j] == 0) && (LDS[i].length < (LDS[j].length+1))){
                LDS[i] = LDS[j].slice();
            }
        }
        // L[i] ends with arr[i]
        LDS[i].push(arr[i]);
    }
    let maxlength = 0;
    // LDS stores the sequences till
    // each element of arr[]
    // TRaverse the LDS[][] to find the 
    // the maximum length
    for(let i = 0; i < n; i++){
        let x = LDS[i].length;
        maxlength = Math.max(maxlength, x);
    }
     
    // Print all the LDS with maximum length
    for(let i = 0; i < n; i++){
        // find size
        let size = LDS[i].length;
 
        // if size == maxlength
        if(size == maxlength){
            // Print LDS
            // printLDS(LDS[i]);
            console.log(LDS[i].join(" "));
            // console.log();
        }
    
}
 
// Driver code
let arr = [2, 11, 16, 12, 36, 60, 71];
let N = arr.length;
 
// Function call
LongestDividingSeq(arr, N);
 
// This code is contributed by Aditya Sharma


Output

2 12 36 
2 12 60 

Time Complexity: O(N2)
Auxiliary Space: O(N2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
17 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments