Friday, January 3, 2025
Google search engine
HomeLanguagesDynamic ProgrammingPrint all longest common sub-sequences in lexicographical order

Print all longest common sub-sequences in lexicographical order

You are given two strings, the task is to print all the longest common sub-sequences in lexicographical order.

Examples: 

Input : str1 = "abcabcaa", str2 = "acbacba"
Output: ababa
        abaca
        abcba
        acaba
        acaca
        acbaa
        acbca
Recommended Practice

This problem is an extension of longest common subsequence. We first find the length of LCS and store all LCS in a 2D table using Memoization (or Dynamic Programming). Then we search all characters from ‘a’ to ‘z’ (to output sorted order) in both strings. If a character is found in both strings and the current positions of the character lead to LCS, we recursively search all occurrences with current LCS length plus 1. 

Below is the implementation of the algorithm. 

C++




// C++ program to find all LCS of two strings in
// sorted order.
#include<bits/stdc++.h>
#define MAX 100
using namespace std;
 
// length of lcs
int lcslen = 0;
 
// dp matrix to store result of sub calls for lcs
int dp[MAX][MAX];
 
// A memoization based function that returns LCS of
// str1[i..len1-1] and str2[j..len2-1]
int lcs(string str1, string str2, int len1, int len2,
                                      int i, int j)
{
    int &ret = dp[i][j];
 
    // base condition
    if (i==len1 || j==len2)
        return ret = 0;
 
    // if lcs has been computed
    if (ret != -1)
        return ret;
 
    ret = 0;
 
    // if characters are same return previous + 1 else
    // max of two sequences after removing i'th and j'th
    // char one by one
    if (str1[i] == str2[j])
        ret = 1 + lcs(str1, str2, len1, len2, i+1, j+1);
    else
        ret = max(lcs(str1, str2, len1, len2, i+1, j),
                  lcs(str1, str2, len1, len2, i, j+1));
    return ret;
}
 
// Function to print all routes common sub-sequences of
// length lcslen
void printAll(string str1, string str2, int len1, int len2,
              char data[], int indx1, int indx2, int currlcs)
{
    // if currlcs is equal to lcslen then print it
    if (currlcs == lcslen)
    {
        data[currlcs] = '\0';
        puts(data);
        return;
    }
 
    // if we are done with all the characters of both string
    if (indx1==len1 || indx2==len2)
        return;
 
    // here we have to print all sub-sequences lexicographically,
    // that's why we start from 'a'to'z' if this character is
    // present in both of them then append it in data[] and same
    // remaining part
    for (char ch='a'; ch<='z'; ch++)
    {
        // done is a flag to tell that we have printed all the
        // subsequences corresponding to current character
        bool done = false;
 
        for (int i=indx1; i<len1; i++)
        {
            // if character ch is present in str1 then check if
            // it is present in str2
            if (ch==str1[i])
            {
              for (int j=indx2; j<len2; j++)
              {
                // if ch is present in both of them and
                // remaining length is equal to remaining
                // lcs length then add ch in sub-sequence
                if (ch==str2[j] &&
                  dp[i][j] == lcslen-currlcs)
                {
                  data[currlcs] = ch;
                  printAll(str1, str2, len1, len2, data, i+1, j+1, currlcs+1);
                  done = true;
                  break;
                }
              }
            }
 
            // If we found LCS beginning with current character.
            if (done)
                break;
        }
    }
}
 
// This function prints all LCS of str1 and str2
// in lexicographic order.
void prinlAllLCSSorted(string str1, string str2)
{
    // Find lengths of both strings
    int len1 = str1.length(), len2 = str2.length();
 
    // Find length of LCS
    memset(dp, -1, sizeof(dp));
    lcslen = lcs(str1, str2, len1, len2, 0, 0);
 
    // Print all LCS using recursive backtracking
    // data[] is used to store individual LCS.
    char data[MAX];
    printAll(str1, str2, len1, len2, data, 0, 0, 0);
}
 
// Driver program to run the case
int main()
{
    string str1 = "abcabcaa", str2 = "acbacba";
    prinlAllLCSSorted(str1, str2);
    return 0;
}


Java




// Java program to find all LCS of two strings in
// sorted order.
import java.io.*;
class GFG
{
  static int MAX = 100;
 
  // length of lcs
  static int lcslen = 0;
 
  // dp matrix to store result of sub calls for lcs
  static int[][] dp = new int[MAX][MAX];
 
  // A memoization based function that returns LCS of
  // str1[i..len1-1] and str2[j..len2-1]
  static int lcs(String str1, String str2,
                 int len1, int len2, int i, int j)
  {
    int ret = dp[i][j];
 
    // base condition
    if (i == len1 || j == len2)
      return ret = 0;
 
    // if lcs has been computed
    if (ret != -1)
      return ret;      
    ret = 0;
 
    // if characters are same return previous + 1 else
    // max of two sequences after removing i'th and j'th
    // char one by one
    if (str1.charAt(i) == str2.charAt(j))
      ret = 1 + lcs(str1, str2, len1, len2, i + 1, j + 1);
    else
      ret = Math.max(lcs(str1, str2, len1, len2, i + 1, j),
                     lcs(str1, str2, len1, len2, i, j + 1));
    return dp[i][j]=ret;
  }
 
  // Function to print all routes common sub-sequences of
  // length lcslen
  static void printAll(String str1, String str2, int len1, int len2,
                       char[] data, int indx1, int indx2, int currlcs)
  {
 
    // if currlcs is equal to lcslen then print it
    if (currlcs == lcslen)
    {
      data[currlcs] = '\0';
      System.out.println(new String(data));
      return;
    }
 
    // if we are done with all the characters of both string
    if (indx1 == len1 || indx2 == len2)
      return;
 
    // here we have to print all sub-sequences lexicographically,
    // that's why we start from 'a'to'z' if this character is
    // present in both of them then append it in data[] and same
    // remaining part
    for (char ch ='a'; ch <='z'; ch++)
    {
 
      // done is a flag to tell that we have printed all the
      // subsequences corresponding to current character
      boolean done = false;
 
      for (int i = indx1; i < len1; i++)
      {
 
        // if character ch is present in str1 then check if
        // it is present in str2
        if (ch == str1.charAt(i))
        {
          for (int j = indx2; j < len2; j++)
          {
 
            // if ch is present in both of them and
            // remaining length is equal to remaining
            // lcs length then add ch in sub-sequence
            if (ch == str2.charAt(j) &&
                dp[i][j] == lcslen - currlcs)
            {
              data[currlcs] = ch;
              printAll(str1, str2, len1, len2,
                       data, i + 1, j + 1, currlcs + 1);
              done = true;
              break;
            }
          }
        }
 
        // If we found LCS beginning with current character. 
        if (done)
          break;
      }
    }
  }
 
  // This function prints all LCS of str1 and str2
  // in lexicographic order.
  static void prinlAllLCSSorted(String str1, String str2)
  {
 
    // Find lengths of both strings
    int len1 = str1.length(), len2 = str2.length();
 
    // Find length of LCS
    for(int i = 0; i < MAX; i++)
    {
      for(int j = 0; j < MAX; j++)
      {
        dp[i][j] = -1;
      }
    }
    lcslen = lcs(str1, str2, len1, len2, 0, 0);
 
    // Print all LCS using recursive backtracking
    // data[] is used to store individual LCS.
    char[] data = new char[MAX];
    printAll(str1, str2, len1, len2, data, 0, 0, 0);
  }
 
  // Driver code
  public static void main(String[] args)
  {
    String str1 = "abcabcaa", str2 = "acbacba";
    prinlAllLCSSorted(str1, str2);
  }
}
 
// This code is contributed by divyesh072019


Python3




# Python3 program to find all LCS of two strings in
# sorted order.
MAX=100
lcslen = 0
 
# dp matrix to store result of sub calls for lcs
dp=[[-1 for i in range(MAX)] for i in range(MAX)]
 
# A memoization based function that returns LCS of
# str1[i..len1-1] and str2[j..len2-1]
def lcs(str1, str2, len1, len2, i, j):
 
    # base condition
    if (i == len1 or j == len2):
        dp[i][j] = 0
        return dp[i][j]
 
    # if lcs has been computed
    if (dp[i][j] != -1):
        return dp[i][j]
 
    ret = 0
 
    # if characters are same return previous + 1 else
    # max of two sequences after removing i'th and j'th
    # char one by one
    if (str1[i] == str2[j]):
        ret = 1 + lcs(str1, str2, len1, len2, i + 1, j + 1)
    else:
        ret = max(lcs(str1, str2, len1, len2, i + 1, j),
                  lcs(str1, str2, len1, len2, i, j + 1))
    dp[i][j] = ret
    return ret
 
# Function to print all routes common sub-sequences of
# length lcslen
def printAll(str1, str2, len1, len2,data, indx1, indx2, currlcs):
     
    # if currlcs is equal to lcslen then print
    if (currlcs == lcslen):
        print("".join(data[:currlcs]))
        return
 
    # if we are done with all the characters of both string
    if (indx1 == len1 or indx2 == len2):
        return
 
    # here we have to print all sub-sequences lexicographically,
    # that's why we start from 'a'to'z' if this character is
    # present in both of them then append it in data[] and same
    # remaining part
    for ch in range(ord('a'),ord('z') + 1):
 
        # done is a flag to tell that we have printed all the
        # subsequences corresponding to current character
        done = False
 
        for i in range(indx1,len1):
            # if character ch is present in str1 then check if
            # it is present in str2
            if (chr(ch)==str1[i]):
              for j in range(indx2, len2):
 
                # if ch is present in both of them and
                # remaining length is equal to remaining
                # lcs length then add ch in sub-sequence
                if (chr(ch) == str2[j] and dp[i][j] == lcslen-currlcs):
                  data[currlcs] = chr(ch)
                  printAll(str1, str2, len1, len2, data, i + 1, j + 1, currlcs + 1)
                  done = True
                  break
 
            # If we found LCS beginning with current character.
            if (done):
                break
 
# This function prints all LCS of str1 and str2
# in lexicographic order.
def prinlAllLCSSorted(str1, str2):
    global lcslen
    # Find lengths of both strings
    len1,len2 = len(str1),len(str2)
 
    lcslen = lcs(str1, str2, len1, len2, 0, 0)
 
    # Print all LCS using recursive backtracking
    # data[] is used to store individual LCS.
    data = ['a' for i in range(MAX)]
    printAll(str1, str2, len1, len2, data, 0, 0, 0)
 
# Driver program to run the case
if __name__ == '__main__':
    str1 = "abcabcaa"
    str2 = "acbacba"
    prinlAllLCSSorted(str1, str2)
 
# This code is contributed by mohit kumar 29


C#




// C# program to find all LCS of two strings in
// sorted order.
using System;
class GFG
{   
    static int MAX = 100;
     
    // length of lcs
    static int lcslen = 0;
       
    // dp matrix to store result of sub calls for lcs
    static int[,] dp = new int[MAX,MAX];
       
    // A memoization based function that returns LCS of
    // str1[i..len1-1] and str2[j..len2-1]
    static int lcs(string str1, string str2,
                   int len1, int len2, int i, int j)
    {
        int ret = dp[i, j];
       
        // base condition
        if (i == len1 || j == len2)
            return ret = 0;
       
        // if lcs has been computed
        if (ret != -1)
            return ret;
       
        ret = 0;
       
        // if characters are same return previous + 1 else
        // max of two sequences after removing i'th and j'th
        // char one by one
        if (str1[i] == str2[j])
            ret = 1 + lcs(str1, str2, len1, len2, i + 1, j + 1);
        else
            ret = Math.Max(lcs(str1, str2, len1, len2, i + 1, j),
                      lcs(str1, str2, len1, len2, i, j + 1));
        return ret;
    }
       
    // Function to print all routes common sub-sequences of
    // length lcslen
    static void printAll(string str1, string str2, int len1, int len2,
                  char[] data, int indx1, int indx2, int currlcs)
    {
        // if currlcs is equal to lcslen then print it
        if (currlcs == lcslen)
        {
            data[currlcs] = '\0';
            Console.WriteLine(new string(data));
            return;
        }
       
        // if we are done with all the characters of both string
        if (indx1 == len1 || indx2 == len2)
            return;
       
        // here we have to print all sub-sequences lexicographically,
        // that's why we start from 'a'to'z' if this character is
        // present in both of them then append it in data[] and same
        // remaining part
        for (char ch='a'; ch<='z'; ch++)
        {
            // done is a flag to tell that we have printed all the
            // subsequences corresponding to current character
            bool done = false;
       
            for (int i = indx1; i < len1; i++)
            {
                // if character ch is present in str1 then check if
                // it is present in str2
                if (ch == str1[i])
                {
                  for (int j = indx2; j < len2; j++)
                  {
                    // if ch is present in both of them and
                    // remaining length is equal to remaining
                    // lcs length then add ch in sub-sequence
                    if (ch == str2[j] &&
                      lcs(str1, str2, len1, len2, i, j) == lcslen-currlcs)
                    {
                      data[currlcs] = ch;
                      printAll(str1, str2, len1, len2, data, i+1, j+1, currlcs+1);
                      done = true;
                      break;
                    }
                  }
                }
       
                // If we found LCS beginning with current character. 
                if (done)
                    break;
            }
        }
    }
       
    // This function prints all LCS of str1 and str2
    // in lexicographic order.
    static void prinlAllLCSSorted(string str1, string str2)
    {
        // Find lengths of both strings
        int len1 = str1.Length, len2 = str2.Length;
       
        // Find length of LCS
        for(int i = 0; i < MAX; i++)
        {
            for(int j = 0; j < MAX; j++)
            {
                dp[i, j] = -1;
            }
        }
        lcslen = lcs(str1, str2, len1, len2, 0, 0);
       
        // Print all LCS using recursive backtracking
        // data[] is used to store individual LCS.
        char[] data = new char[MAX];
        printAll(str1, str2, len1, len2, data, 0, 0, 0);
    }
 
  // Driver code
  static void Main()
  {
    string str1 = "abcabcaa", str2 = "acbacba";
    prinlAllLCSSorted(str1, str2);
  }
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
// Javascript program to find all LCS of two strings in
// sorted order.
     
    let  MAX = 100;
    // length of lcs
    let lcslen = 0;
     
    // dp matrix to store result of sub calls for lcs
    let dp = new Array(MAX);
     
    // A memoization based function that returns LCS of
  // str1[i..len1-1] and str2[j..len2-1]
    function lcs(str1,str2,len1,len2,i,j)
    {
        let ret = dp[i][j];
  
    // base condition
    if (i == len1 || j == len2)
      return ret = 0;
  
    // if lcs has been computed
    if (ret != -1)
      return ret;     
    ret = 0;
  
    // if characters are same return previous + 1 else
    // max of two sequences after removing i'th and j'th
    // char one by one
    if (str1[i] == str2[j])
      ret = 1 + lcs(str1, str2, len1, len2, i + 1, j + 1);
    else
      ret = Math.max(lcs(str1, str2, len1, len2, i + 1, j),
                     lcs(str1, str2, len1, len2, i, j + 1));
    return ret;
    }
     
    // Function to print all routes common sub-sequences of
  // length lcslen
    function printAll(str1,str2,len1,len2,data,indx1,indx2,currlcs)
    {
        // if currlcs is equal to lcslen then print it
    if (currlcs == lcslen)
    {
      data[currlcs] = null;
      document.write(data.join("")+"<br>");
      return;
    }
  
    // if we are done with all the characters of both string
    if (indx1 == len1 || indx2 == len2)
      return;
  
    // here we have to print all sub-sequences lexicographically,
    // that's why we start from 'a'to'z' if this character is
    // present in both of them then append it in data[] and same
    // remaining part
    for (let ch ='a'.charCodeAt(0); ch <='z'.charCodeAt(0); ch++)
    {
          
      // done is a flag to tell that we have printed all the
      // subsequences corresponding to current character
      let done = false;
  
      for (let i = indx1; i < len1; i++)
      {
  
        // if character ch is present in str1 then check if
        // it is present in str2
        if (ch == str1[i].charCodeAt(0))
        {
          for (let j = indx2; j < len2; j++)
          {
  
            // if ch is present in both of them and
            // remaining length is equal to remaining
            // lcs length then add ch in sub-sequence
            if (ch == str2[j].charCodeAt(0) &&
                lcs(str1, str2, len1, len2, i, j) == lcslen - currlcs)
            {
              data[currlcs] = String.fromCharCode(ch);
              printAll(str1, str2, len1, len2,
                       data, i + 1, j + 1, currlcs + 1);
              done = true;
              break;
            }
          }
        }
  
        // If we found LCS beginning with current character.
        if (done)
          break;
      }
    }
    }
     
    // This function prints all LCS of str1 and str2
  // in lexicographic order.
    function prinlAllLCSSorted(str1,str2)
    {
        // Find lengths of both strings
    let len1 = str1.length, len2 = str2.length;
  
    // Find length of LCS
    for(let i = 0; i < MAX; i++)
    {
        dp[i]=new Array(MAX);
      for(let j = 0; j < MAX; j++)
      {
        dp[i][j] = -1;
      }
    }
    lcslen = lcs(str1, str2, len1, len2, 0, 0);
  
    // Print all LCS using recursive backtracking
    // data[] is used to store individual LCS.
    let data = new Array(MAX);
    printAll(str1, str2, len1, len2, data, 0, 0, 0);
    }
     
    // Driver code
    let str1 = "abcabcaa", str2 = "acbacba";
    prinlAllLCSSorted(str1, str2);
 
     
    // This code is contributed by unknown2108
</script>


Output

ababa
abaca
abcba
acaba
acaca
acbaa
acbca

Time Complexity: O(m*n*p), where ‘m’ is the length of the characters array, ‘n’ is the length of array1, and ‘p’ is the length of array2.
Space Complexity: O(m*n), because we are using m*n size 2D matrix for storing the result.
 

This article is contributed by Shashak Mishra ( Gullu ). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments