Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPrint all leaf nodes of an n-ary tree using DFS

Print all leaf nodes of an n-ary tree using DFS

Given an array edge[][2] where (edge[i][0], edge[i][1]) defines an edge in the n-ary tree, the task is to print all the leaf nodes of the given tree using.

Examples:  

Input: edge[][] = {{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 6}}
Output: 4 5 6
    1
   / \
  2   3
 / \   \
4   5   6

Input: edge[][] = {{1, 5}, {1, 7}, {5, 6}}
Output: 6 7

Approach: DFS can be used to traverse the complete tree. We will keep track of parent while traversing to avoid the visited node array. Initially for every node we can set a flag and if the node have at least one child (i.e. non-leaf node) then we will reset the flag. The nodes with no children are the leaf nodes.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform DFS on the tree
void dfs(list<int> t[], int node, int parent)
{
    int flag = 1;
 
    // Iterating the children of current node
    for (auto ir : t[node]) {
 
        // There is at least a child
        // of the current node
        if (ir != parent) {
            flag = 0;
            dfs(t, ir, node);
        }
    }
 
    // Current node is connected to only
    // its parent i.e. it is a leaf node
    if (flag == 1)
        cout << node << " ";
}
 
// Driver code
int main()
{
    // Adjacency list
    list<int> t[1005];
 
    // List of all edges
    pair<int, int> edges[] = { { 1, 2 },
                               { 1, 3 },
                               { 2, 4 },
                               { 3, 5 },
                               { 3, 6 },
                               { 3, 7 },
                               { 6, 8 } };
 
    // Count of edges
    int cnt = sizeof(edges) / sizeof(edges[0]);
 
    // Number of nodes
    int node = cnt + 1;
 
    // Create the tree
    for (int i = 0; i < cnt; i++) {
        t[edges[i].first].push_back(edges[i].second);
        t[edges[i].second].push_back(edges[i].first);
    }
 
    // Function call
    dfs(t, 1, 0);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
// Pair class
static class pair
{
    int first,second;
    pair(int a, int b)
    {
        first = a;
        second = b;
    }
}
 
// Function to perform DFS on the tree
static void dfs(Vector t, int node, int parent)
{
    int flag = 1;
     
    // Iterating the children of current node
    for (int i = 0; i < ((Vector)t.get(node)).size(); i++)
    {
        int ir = (int)((Vector)t.get(node)).get(i);
         
        // There is at least a child
        // of the current node
        if (ir != parent)
        {
            flag = 0;
            dfs(t, ir, node);
        }
    }
 
    // Current node is connected to only
    // its parent i.e. it is a leaf node
    if (flag == 1)
        System.out.print( node + " ");
}
 
// Driver code
public static void main(String args[])
{
    // Adjacency list
    Vector t = new Vector();
 
    // List of all edges
    pair edges[] = { new pair( 1, 2 ),
                    new pair( 1, 3 ),
                    new pair( 2, 4 ),
                    new pair( 3, 5 ),
                    new pair( 3, 6 ),
                    new pair( 3, 7 ),
                    new pair( 6, 8 ) };
 
    // Count of edges
    int cnt = edges.length;
 
    // Number of nodes
    int node = cnt + 1;
     
    for(int i = 0; i < 1005; i++)
    {
        t.add(new Vector());
    }
 
    // Create the tree
    for (int i = 0; i < cnt; i++)
    {
        ((Vector)t.get(edges[i].first)).add(edges[i].second);
        ((Vector)t.get(edges[i].second)).add(edges[i].first);
    }
 
    // Function call
    dfs(t, 1, 0);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
t = [[] for i in range(1005)]
 
# Function to perform DFS on the tree
def dfs(node, parent):
    flag = 1
 
    # Iterating the children of current node
    for ir in t[node]:
 
        # There is at least a child
        # of the current node
        if (ir != parent):
            flag = 0
            dfs(ir, node)
 
    # Current node is connected to only
    # its parent i.e. it is a leaf node
    if (flag == 1):
        print(node, end = " ")
 
# Driver code
 
# List of all edges
edges = [[ 1, 2 ],
         [ 1, 3 ],
         [ 2, 4 ],
         [ 3, 5 ],
         [ 3, 6 ],
         [ 3, 7 ],
         [ 6, 8 ]]
 
# Count of edges
cnt = len(edges)
 
# Number of nodes
node = cnt + 1
 
# Create the tree
for i in range(cnt):
    t[edges[i][0]].append(edges[i][1])
    t[edges[i][1]].append(edges[i][0])
 
# Function call
dfs(1, 0)
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System.Collections;
using System.Collections.Generic;
using System;
 
class GFG{
     
// Pair class
class pair
{
    public int first, second;
    public pair(int a, int b)
    {
        first = a;
        second = b;
    }
}
 
// Function to perform DFS on the tree
static void dfs(ArrayList t, int node,
                             int parent)
{
    int flag = 1;
     
    // Iterating the children of current node
    for(int i = 0;
            i < ((ArrayList)t[node]).Count;
            i++)
    {
        int ir = (int)((ArrayList)t[node])[i];
         
        // There is at least a child
        // of the current node
        if (ir != parent)
        {
            flag = 0;
            dfs(t, ir, node);
        }
    }
 
    // Current node is connected to only
    // its parent i.e. it is a leaf node
    if (flag == 1)
        Console.Write( node + " ");
}
 
// Driver code
public static void Main(string []args)
{
     
    // Adjacency list
    ArrayList t = new ArrayList();
 
    // List of all edges
    pair []edges = { new pair(1, 2),
                     new pair(1, 3),
                     new pair(2, 4),
                     new pair(3, 5),
                     new pair(3, 6),
                     new pair(3, 7),
                     new pair(6, 8) };
 
    // Count of edges
    int cnt = edges.Length;
     
    for(int i = 0; i < 1005; i++)
    {
        t.Add(new ArrayList());
    }
 
    // Create the tree
    for(int i = 0; i < cnt; i++)
    {
        ((ArrayList)t[edges[i].first]).Add(
            edges[i].second);
        ((ArrayList)t[edges[i].second]).Add(
            edges[i].first);
    }
 
    // Function call
    dfs(t, 1, 0);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to perform DFS on the tree
function dfs(t, node, parent)
{
    let flag = 1;
      
    // Iterating the children of current node
    for(let i = 0; i < t[node].length; i++)
    {
        let ir = t[node][i];
          
        // There is at least a child
        // of the current node
        if (ir != parent)
        {
            flag = 0;
            dfs(t, ir, node);
        }
    }
  
    // Current node is connected to only
    // its parent i.e. it is a leaf node
    if (flag == 1)
        document.write( node + " ");
}
 
// Driver code
 
// Adjacency list
let t = []
 
// List of all edges
let edges = [ [ 1, 2 ], [ 1, 3 ],
              [ 2, 4 ], [ 3, 5 ],
              [ 3, 6 ], [ 3, 7 ],
              [ 6, 8 ] ];
 
// Count of edges
let cnt = edges.length;
 
// Number of nodes
let node = cnt + 1;
  
for(let i = 0; i < 1005; i++)
{
    t.push([]);
}
 
// Create the tree
for(let i = 0; i < cnt; i++)
{
    t[edges[i][0]].push(edges[i][1])
    t[edges[i][1]].push(edges[i][0])
}
 
// Function call
dfs(t, 1, 0);
 
// This code is contributed by patel2127
 
</script>


Output: 

4 5 8 7

 

Time Complexity: O(N), where N is the number of nodes in the graph.
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments