Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPrint all even nodes of Binary Search Tree

Print all even nodes of Binary Search Tree

Given a binary search tree. The task is to print all even nodes of the binary search tree.

Examples: 

Input : 
          5 
        /   \ 
       3     7 
      / \   / \ 
     2   4 6   8 
Output : 2 4 6 8

Input :
          14 
        /   \ 
       12    17 
      / \   / \ 
     8  13 16   19 
Output : 8 12 14 16

Approach: Traverse the Binary Search tree and check if current node’s value is even. If yes then print it otherwise skip that node. 

Below is the implementation of the above Approach: 

C++




// C++ program to print all even node of BST
#include <bits/stdc++.h>
using namespace std;
 
// create Tree
struct Node {
    int key;
    struct Node *left, *right;
};
 
// A utility function to create a new BST node
Node* newNode(int item)
{
    Node* temp = new Node;
    temp->key = item;
    temp->left = temp->right = NULL;
    return temp;
}
 
// A utility function to do inorder traversal of BST
void inorder(Node* root)
{
    if (root != NULL) {
        inorder(root->left);
        cout << root->key << " ";
        inorder(root->right);
    }
}
 
/* A utility function to insert a new node
   with given key in BST */
Node* insert(Node* node, int key)
{
    /* If the tree is empty, return a new node */
    if (node == NULL)
        return newNode(key);
 
    /* Otherwise, recur down the tree */
    if (key < node->key)
        node->left = insert(node->left, key);
    else
        node->right = insert(node->right, key);
 
    /* return the (unchanged) node pointer */
    return node;
}
 
// Function to print all even nodes
void evenNode(Node* root)
{
    if (root != NULL) {
        evenNode(root->left);
        // if node is even then print it
        if (root->key % 2 == 0)
            cout << root->key << " ";
        evenNode(root->right);
    }
}
 
// Driver Code
int main()
{
    /* Let us create following BST
       5
      / \
     3     7
    / \ / \
    2 4 6 8 */
    Node* root = NULL;
    root = insert(root, 5);
    root = insert(root, 3);
    root = insert(root, 2);
    root = insert(root, 4);
    root = insert(root, 7);
    root = insert(root, 6);
    root = insert(root, 8);
 
    evenNode(root);
 
    return 0;
}


Java




// Java program to print all even node of BST
class GfG {
 
// create Tree
static class Node {
    int key;
    Node left, right;
}
 
// A utility function to create a new BST node
static Node newNode(int item)
{
    Node temp = new Node();
    temp.key = item;
    temp.left = null;
    temp.right = null;
    return temp;
}
 
// A utility function to do inorder traversal of BST
static void inorder(Node root)
{
    if (root != null) {
        inorder(root.left);
        System.out.print(root.key + " ");
        inorder(root.right);
    }
}
 
/* A utility function to insert a new node
with given key in BST */
static Node insert(Node node, int key)
{
    /* If the tree is empty, return a new node */
    if (node == null)
        return newNode(key);
 
    /* Otherwise, recur down the tree */
    if (key < node.key)
        node.left = insert(node.left, key);
    else
        node.right = insert(node.right, key);
 
    /* return the (unchanged) node pointer */
    return node;
}
 
// Function to print all even nodes
static void evenNode(Node root)
{
    if (root != null) {
        evenNode(root.left);
        // if node is even then print it
        if (root.key % 2 == 0)
            System.out.print(root.key + " ");
        evenNode(root.right);
    }
}
 
// Driver Code
public static void main(String[] args)
{
    /* Let us create following BST
    5
    / \
    3     7
    / \ / \
    2 4 6 8 */
    Node root = null;
    root = insert(root, 5);
    root = insert(root, 3);
    root = insert(root, 2);
    root = insert(root, 4);
    root = insert(root, 7);
    root = insert(root, 6);
    root = insert(root, 8);
 
    evenNode(root);
 
}
}


Python3




# Python3 program to print all even node of BST
 
# create Tree
# to create a new BST node
class newNode:
 
    # Construct to create a new node
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
 
# A utility function to do inorder
# traversal of BST
def inorder(root) :
 
    if (root != None):
        inorder(root.left)
        printf("%d ", root.key)
        inorder(root.right)
     
""" A utility function to insert a new
node with given key in BST """
def insert(node, key):
 
    """ If the tree is empty,
    return a new node """
    if (node == None):
        return newNode(key)
 
    """ Otherwise, recur down the tree """
    if (key < node.key):
        node.left = insert(node.left, key)
    else:
        node.right = insert(node.right, key)
 
    """ return the (unchanged)
        node pointer """
    return node
 
# Function to print all even nodes
def evenNode(root) :
 
    if (root != None):
        evenNode(root.left)
         
        # if node is even then print it
        if (root.key % 2 == 0):
            print(root.key, end = " ")
        evenNode(root.right)
 
# Driver Code
if __name__ == '__main__':
     
    """ Let us create following BST
    5
    / \
    3 7
    / \ / \
    2 4 6 8 """
    root = None
    root = insert(root, 5)
    root = insert(root, 3)
    root = insert(root, 2)
    root = insert(root, 4)
    root = insert(root, 7)
    root = insert(root, 6)
    root = insert(root, 8)
 
    evenNode(root)
 
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)


C#




// C# program to print all even node of BST
using System;
 
class GfG
{
 
    // create Tree
    class Node
    {
        public int key;
        public Node left, right;
    }
 
    // A utility function to
    // create a new BST node
    static Node newNode(int item)
    {
        Node temp = new Node();
        temp.key = item;
        temp.left = null;
        temp.right = null;
        return temp;
    }
 
    // A utility function to do
    // inorder traversal of BST
    static void inorder(Node root)
    {
        if (root != null)
        {
            inorder(root.left);
            Console.Write(root.key + " ");
            inorder(root.right);
        }
    }
 
    /* A utility function to insert a new node
    with given key in BST */
    static Node insert(Node node, int key)
    {
        /* If the tree is empty, return a new node */
        if (node == null)
            return newNode(key);
 
        /* Otherwise, recur down the tree */
        if (key < node.key)
            node.left = insert(node.left, key);
        else
            node.right = insert(node.right, key);
 
        /* return the (unchanged) node pointer */
        return node;
    }
 
    // Function to print all even nodes
    static void evenNode(Node root)
    {
        if (root != null)
        {
            evenNode(root.left);
             
            // if node is even then print it
            if (root.key % 2 == 0)
                Console.Write(root.key + " ");
            evenNode(root.right);
        }
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        /* Let us create following BST
        5
        / \
        3 7
        / \ / \
        2 4 6 8 */
        Node root = null;
        root = insert(root, 5);
        root = insert(root, 3);
        root = insert(root, 2);
        root = insert(root, 4);
        root = insert(root, 7);
        root = insert(root, 6);
        root = insert(root, 8);
 
        evenNode(root);
    }
}
 
// This code has been contributed
// by PrinciRaj1992


Javascript




<script>
 
// JavaScript program to print all even node of BST
 
// create Tree
     class Node {
            constructor() {
                this.key = 0;
                this.left = null;
                this.right = null;
            }
        }
      
 
// A utility function to create a new BST node
function newNode(item)
{
    var temp = new Node();
    temp.key = item;
    temp.left = null;
    temp.right = null;
    return temp;
}
 
// A utility function to do inorder traversal of BST
function inorder(root)
{
    if (root != null) {
        inorder(root.left);
        document.write(root.key + " ");
        inorder(root.right);
    }
}
 
/* A utility function to insert a new node
with given key in BST */
function insert(node , key)
{
    /* If the tree is empty, return a new node */
    if (node == null)
        return newNode(key);
 
    /* Otherwise, recur down the tree */
    if (key < node.key)
        node.left = insert(node.left, key);
    else
        node.right = insert(node.right, key);
 
    /* return the (unchanged) node pointer */
    return node;
}
 
// Function to print all even nodes
function evenNode(root)
{
    if (root != null) {
        evenNode(root.left);
        // if node is even then print it
        if (root.key % 2 == 0)
            document.write(root.key + " ");
        evenNode(root.right);
    }
}
 
// Driver Code
    /* Let us create following BST
    5
    / \
    3     7
    / \ / \
    2 4 6 8 */
    var root = null;
    root = insert(root, 5);
    root = insert(root, 3);
    root = insert(root, 2);
    root = insert(root, 4);
    root = insert(root, 7);
    root = insert(root, 6);
    root = insert(root, 8);
 
    evenNode(root);
 
// This code contributed by aashish1995
 
</script>


Output

2 4 6 8 

Complexity Analysis:

  • Time Complexity: O(N)
    • Here N is the number of nodes and as we have to visit every node the time complexity is O(N).
  • Auxiliary Space: O(h)
    • Here h is the height of the tree and extra space is used in recursion call stack.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments