Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIPrimality Test | Set 3 (Miller–Rabin)

Primality Test | Set 3 (Miller–Rabin)

Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.
Primality Test | Set 1 (Introduction and School Method) 
Primality Test | Set 2 (Fermat Method)
In this post, the Miller-Rabin method is discussed. This method is a probabilistic method ( like Fermat), but it is generally preferred over Fermat’s method.

Algorithm:

// It returns false if n is composite and returns true if n
// is probably prime.  k is an input parameter that determines
// accuracy level. Higher value of k indicates more accuracy.
bool isPrime(int n, int k)
1) Handle base cases for n < 3
2) If n is even, return false.
3) Find an odd number d such that n-1 can be written as d*2r. 
   Note that since n is odd, (n-1) must be even and r must be 
   greater than 0.
4) Do following k times
     if (millerTest(n, d) == false)
          return false
5) Return true.

// This function is called for all k trials. It returns 
// false if n is composite and returns true if n is probably
// prime.  
// d is an odd number such that d*2r = n-1 for some r>=1
bool millerTest(int n, int d)
1) Pick a random number 'a' in range [2, n-2]
2) Compute: x = pow(a, d) % n
3) If x == 1 or x == n-1, return true.

// Below loop mainly runs 'r-1' times.
4) Do following while d doesn't become n-1.
     a) x = (x*x) % n.
     b) If (x == 1) return false.
     c) If (x == n-1) return true. 

Example: 

Input: n = 13,  k = 2.

1) Compute d and r such that d*2r = n-1, 
     d = 3, r = 2. 
2) Call millerTest k times.

1st Iteration:
1) Pick a random number 'a' in range [2, n-2]
      Suppose a = 4

2) Compute: x = pow(a, d) % n
     x = 43 % 13 = 12

3) Since x = (n-1), return true.

IInd Iteration:
1) Pick a random number 'a' in range [2, n-2]
      Suppose a = 5

2) Compute: x = pow(a, d) % n
     x = 53 % 13 = 8

3) x neither 1 nor 12.

4) Do following (r-1) = 1 times
   a) x = (x * x) % 13 = (8 * 8) % 13 = 12
   b) Since x = (n-1), return true.

Since both iterations return true, we return true. 

Implementation: 
Below is the implementation of the above algorithm. 

C++




// C++ program Miller-Rabin primality test
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to do modular exponentiation.
// It returns (x^y) % p
int power(int x, unsigned int y, int p)
{
    int res = 1;      // Initialize result
    x = x % p;  // Update x if it is more than or
                // equal to p
    while (y > 0)
    {
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res*x) % p;
 
        // y must be even now
        y = y>>1; // y = y/2
        x = (x*x) % p;
    }
    return res;
}
 
// This function is called for all k trials. It returns
// false if n is composite and returns true if n is
// probably prime.
// d is an odd number such that  d*2 = n-1
// for some r >= 1
bool miillerTest(int d, int n)
{
    // Pick a random number in [2..n-2]
    // Corner cases make sure that n > 4
    int a = 2 + rand() % (n - 4);
 
    // Compute a^d % n
    int x = power(a, d, n);
 
    if (x == 1  || x == n-1)
       return true;
 
    // Keep squaring x while one of the following doesn't
    // happen
    // (i)   d does not reach n-1
    // (ii)  (x^2) % n is not 1
    // (iii) (x^2) % n is not n-1
    while (d != n-1)
    {
        x = (x * x) % n;
        d *= 2;
 
        if (x == 1)      return false;
        if (x == n-1)    return true;
    }
 
    // Return composite
    return false;
}
 
// It returns false if n is composite and returns true if n
// is probably prime.  k is an input parameter that determines
// accuracy level. Higher value of k indicates more accuracy.
bool isPrime(int n, int k)
{
    // Corner cases
    if (n <= 1 || n == 4)  return false;
    if (n <= 3) return true;
 
    // Find r such that n = 2^d * r + 1 for some r >= 1
    int d = n - 1;
    while (d % 2 == 0)
        d /= 2;
 
    // Iterate given number of 'k' times
    for (int i = 0; i < k; i++)
         if (!miillerTest(d, n))
              return false;
 
    return true;
}
 
// Driver program
int main()
{
    int k = 4;  // Number of iterations
 
    cout << "All primes smaller than 100: \n";
    for (int n = 1; n < 100; n++)
       if (isPrime(n, k))
          cout << n << " ";
 
    return 0;
}


Java




// Java program Miller-Rabin primality test
import java.io.*;
import java.math.*;
 
class GFG {
 
    // Utility function to do modular
    // exponentiation. It returns (x^y) % p
    static int power(int x, int y, int p) {
         
        int res = 1; // Initialize result
         
        //Update x if it is more than or
        // equal to p
        x = x % p;
 
        while (y > 0) {
             
            // If y is odd, multiply x with result
            if ((y & 1) == 1)
                res = (res * x) % p;
         
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
         
        return res;
    }
     
    // This function is called for all k trials.
    // It returns false if n is composite and
    // returns false if n is probably prime.
    // d is an odd number such that d*2<sup>r</sup>
    // = n-1 for some r >= 1
    static boolean miillerTest(int d, int n) {
         
        // Pick a random number in [2..n-2]
        // Corner cases make sure that n > 4
        int a = 2 + (int)(Math.random() % (n - 4));
     
        // Compute a^d % n
        int x = power(a, d, n);
     
        if (x == 1 || x == n - 1)
            return true;
     
        // Keep squaring x while one of the
        // following doesn't happen
        // (i) d does not reach n-1
        // (ii) (x^2) % n is not 1
        // (iii) (x^2) % n is not n-1
        while (d != n - 1) {
            x = (x * x) % n;
            d *= 2;
         
            if (x == 1)
                return false;
            if (x == n - 1)
                return true;
        }
     
        // Return composite
        return false;
    }
     
    // It returns false if n is composite
    // and returns true if n is probably
    // prime. k is an input parameter that
    // determines accuracy level. Higher
    // value of k indicates more accuracy.
    static boolean isPrime(int n, int k) {
         
        // Corner cases
        if (n <= 1 || n == 4)
            return false;
        if (n <= 3)
            return true;
     
        // Find r such that n = 2^d * r + 1
        // for some r >= 1
        int d = n - 1;
         
        while (d % 2 == 0)
            d /= 2;
     
        // Iterate given number of 'k' times
        for (int i = 0; i < k; i++)
            if (!miillerTest(d, n))
                return false;
     
        return true;
    }
     
    // Driver program
    public static void main(String args[]) {
         
        int k = 4; // Number of iterations
     
        System.out.println("All primes smaller "
                                + "than 100: ");
                                 
        for (int n = 1; n < 100; n++)
            if (isPrime(n, k))
                System.out.print(n + " ");
    }
}
 
/* This code is contributed by Nikita Tiwari.*/


Python3




# Python3 program Miller-Rabin primality test
import random
 
# Utility function to do
# modular exponentiation.
# It returns (x^y) % p
def power(x, y, p):
     
    # Initialize result
    res = 1;
     
    # Update x if it is more than or
    # equal to p
    x = x % p;
    while (y > 0):
         
        # If y is odd, multiply
        # x with result
        if (y & 1):
            res = (res * x) % p;
 
        # y must be even now
        y = y>>1; # y = y/2
        x = (x * x) % p;
     
    return res;
 
# This function is called
# for all k trials. It returns
# false if n is composite and
# returns false if n is
# probably prime. d is an odd
# number such that d*2<sup>r</sup> = n-1
# for some r >= 1
def miillerTest(d, n):
     
    # Pick a random number in [2..n-2]
    # Corner cases make sure that n > 4
    a = 2 + random.randint(1, n - 4);
 
    # Compute a^d % n
    x = power(a, d, n);
 
    if (x == 1 or x == n - 1):
        return True;
 
    # Keep squaring x while one
    # of the following doesn't
    # happen
    # (i) d does not reach n-1
    # (ii) (x^2) % n is not 1
    # (iii) (x^2) % n is not n-1
    while (d != n - 1):
        x = (x * x) % n;
        d *= 2;
 
        if (x == 1):
            return False;
        if (x == n - 1):
            return True;
 
    # Return composite
    return False;
 
# It returns false if n is
# composite and returns true if n
# is probably prime. k is an
# input parameter that determines
# accuracy level. Higher value of
# k indicates more accuracy.
def isPrime( n, k):
     
    # Corner cases
    if (n <= 1 or n == 4):
        return False;
    if (n <= 3):
        return True;
 
    # Find r such that n =
    # 2^d * r + 1 for some r >= 1
    d = n - 1;
    while (d % 2 == 0):
        d //= 2;
 
    # Iterate given number of 'k' times
    for i in range(k):
        if (miillerTest(d, n) == False):
            return False;
 
    return True;
 
# Driver Code
# Number of iterations
k = 4;
 
print("All primes smaller than 100: ");
for n in range(1,100):
    if (isPrime(n, k)):
        print(n , end=" ");
 
# This code is contributed by mits


C#




// C# program Miller-Rabin primality test
using System;
 
class GFG
{
 
    // Utility function to do modular
    // exponentiation. It returns (x^y) % p
    static int power(int x, int y, int p)
    {
         
        int res = 1; // Initialize result
         
        // Update x if it is more than
        // or equal to p
        x = x % p;
 
        while (y > 0)
        {
             
            // If y is odd, multiply x with result
            if ((y & 1) == 1)
                res = (res * x) % p;
         
            // y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
         
        return res;
    }
     
    // This function is called for all k trials.
    // It returns false if n is composite and
    // returns false if n is probably prime.
    // d is an odd number such that d*2<sup>r</sup>
    // = n-1 for some r >= 1
    static bool miillerTest(int d, int n)
    {
         
        // Pick a random number in [2..n-2]
        // Corner cases make sure that n > 4
        Random r = new Random();
        int a = 2 + (int)(r.Next() % (n - 4));
     
        // Compute a^d % n
        int x = power(a, d, n);
     
        if (x == 1 || x == n - 1)
            return true;
     
        // Keep squaring x while one of the
        // following doesn't happen
        // (i) d does not reach n-1
        // (ii) (x^2) % n is not 1
        // (iii) (x^2) % n is not n-1
        while (d != n - 1)
        {
            x = (x * x) % n;
            d *= 2;
         
            if (x == 1)
                return false;
            if (x == n - 1)
                return true;
        }
     
        // Return composite
        return false;
    }
     
    // It returns false if n is composite
    // and returns true if n is probably
    // prime. k is an input parameter that
    // determines accuracy level. Higher
    // value of k indicates more accuracy.
    static bool isPrime(int n, int k)
    {
         
        // Corner cases
        if (n <= 1 || n == 4)
            return false;
        if (n <= 3)
            return true;
     
        // Find r such that n = 2^d * r + 1
        // for some r >= 1
        int d = n - 1;
         
        while (d % 2 == 0)
            d /= 2;
     
        // Iterate given number of 'k' times
        for (int i = 0; i < k; i++)
            if (miillerTest(d, n) == false)
                return false;
     
        return true;
    }
     
    // Driver Code
    static void Main()
    {
        int k = 4; // Number of iterations
     
        Console.WriteLine("All primes smaller " +
                                   "than 100: ");
                                 
        for (int n = 1; n < 100; n++)
            if (isPrime(n, k))
                Console.Write(n + " ");
    }
}
 
// This code is contributed by mits


PHP




<?php
// PHP program Miller-Rabin primality test
 
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p
function power($x, $y, $p)
{
     
    // Initialize result
    $res = 1;
     
    // Update x if it is more than or
    // equal to p
    $x = $x % $p;
    while ($y > 0)
    {
         
        // If y is odd, multiply
        // x with result
        if ($y & 1)
            $res = ($res*$x) % $p;
 
        // y must be even now
        $y = $y>>1; // $y = $y/2
        $x = ($x*$x) % $p;
    }
    return $res;
}
 
// This function is called
// for all k trials. It returns
// false if n is composite and
// returns false if n is
// probably prime. d is an odd
// number such that d*2<sup>r</sup> = n-1
// for some r >= 1
function miillerTest($d, $n)
{
     
    // Pick a random number in [2..n-2]
    // Corner cases make sure that n > 4
    $a = 2 + rand() % ($n - 4);
 
    // Compute a^d % n
    $x = power($a, $d, $n);
 
    if ($x == 1 || $x == $n-1)
    return true;
 
    // Keep squaring x while one
    // of the following doesn't
    // happen
    // (i) d does not reach n-1
    // (ii) (x^2) % n is not 1
    // (iii) (x^2) % n is not n-1
    while ($d != $n-1)
    {
        $x = ($x * $x) % $n;
        $d *= 2;
 
        if ($x == 1)     return false;
        if ($x == $n-1) return true;
    }
 
    // Return composite
    return false;
}
 
// It returns false if n is
// composite and returns true if n
// is probably prime. k is an
// input parameter that determines
// accuracy level. Higher value of
// k indicates more accuracy.
function isPrime( $n, $k)
{
     
    // Corner cases
    if ($n <= 1 || $n == 4) return false;
    if ($n <= 3) return true;
 
    // Find r such that n =
    // 2^d * r + 1 for some r >= 1
    $d = $n - 1;
    while ($d % 2 == 0)
        $d /= 2;
 
    // Iterate given number of 'k' times
    for ($i = 0; $i < $k; $i++)
        if (!miillerTest($d, $n))
            return false;
 
    return true;
}
 
    // Driver Code
    // Number of iterations
    $k = 4;
 
    echo "All primes smaller than 100: \n";
    for ($n = 1; $n < 100; $n++)
    if (isPrime($n, $k))
        echo $n , " ";
 
// This code is contributed by ajit
?>


Javascript




<script>
// Javascript program Miller-Rabin primality test
 
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p
function power(x, y, p)
{
     
    // Initialize result
    let res = 1;
     
    // Update x if it is more than or
    // equal to p
    x = x % p;
    while (y > 0)
    {
         
        // If y is odd, multiply
        // x with result
        if (y & 1)
            res = (res*x) % p;
 
        // y must be even now
        y = y>>1; // y = y/2
        x = (x*x) % p;
    }
    return res;
}
 
// This function is called
// for all k trials. It returns
// false if n is composite and
// returns false if n is
// probably prime. d is an odd
// number such that d*2<sup>r</sup> = n-1
// for some r >= 1
function miillerTest(d, n)
{
     
    // Pick a random number in [2..n-2]
    // Corner cases make sure that n > 4
    let a = 2 + Math.floor(Math.random() * (n-2)) % (n - 4);
 
    // Compute a^d % n
    let x = power(a, d, n);
 
    if (x == 1 || x == n-1)
        return true;
 
    // Keep squaring x while one
    // of the following doesn't
    // happen
    // (i) d does not reach n-1
    // (ii) (x^2) % n is not 1
    // (iii) (x^2) % n is not n-1
    while (d != n-1)
    {
        x = (x * x) % n;
        d *= 2;
 
        if (x == 1)    
            return false;
        if (x == n-1)
              return true;
    }
 
    // Return composite
    return false;
}
 
// It returns false if n is
// composite and returns true if n
// is probably prime. k is an
// input parameter that determines
// accuracy level. Higher value of
// k indicates more accuracy.
function isPrime( n, k)
{
     
    // Corner cases
    if (n <= 1 || n == 4) return false;
    if (n <= 3) return true;
 
    // Find r such that n =
    // 2^d * r + 1 for some r >= 1
    let d = n - 1;
    while (d % 2 == 0)
        d /= 2;
 
    // Iterate given number of 'k' times
    for (let i = 0; i < k; i++)
        if (!miillerTest(d, n))
            return false;
 
    return true;
}
 
// Driver Code
// Number of iterations
let k = 4;
 
document.write("All primes smaller than 100: <br>");
for (let n = 1; n < 100; n++)
    if (isPrime(n, k))
        document.write(n , " ");
 
// This code is contributed by gfgking
</script>


Output:  

All primes smaller than 100: 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 
61 67 71 73 79 83 89 97 

Time Complexity: O(k*logn)

Auxiliary Space: O(1)

How does this work? 
Below are some important facts behind the algorithm:  

  1. Fermat’s theorem states that, If n is a prime number, then for every a, 1 <= a < n, an-1 % n = 1
  2. Base cases make sure that n must be odd. Since n is odd, n-1 must be even. And an even number can be written as d * 2s where d is an odd number and s > 0.
  3. From the above two points, for every randomly picked number in the range [2, n-2], the value of ad*2r % n must be 1.
  4. As per Euclid’s Lemma, if x2 % n = 1 or (x2 – 1) % n = 0 or (x-1)(x+1)% n = 0. Then, for n to be prime, either n divides (x-1) or n divides (x+1). Which means either x % n = 1 or x % n = -1.
  5. From points 2 and 3, we can conclude
    For n to be prime, either
    ad % n = 1 
         OR 
    ad*2i % n = -1 
    for some i, where 0 <= i <= r-1.

Next Article : 
Primality Test | Set 4 (Solovay-Strassen)
This article is contributed Ruchir Garg. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments