Given a number n, check if it is prime or not. We have introduced and discussed School and Fermat methods for primality testing.
Primality Test | Set 1 (Introduction and School Method)
Primality Test | Set 2 (Fermat Method)
In this post, the Miller-Rabin method is discussed. This method is a probabilistic method ( like Fermat), but it is generally preferred over Fermat’s method.
Algorithm:
// It returns false if n is composite and returns true if n // is probably prime. k is an input parameter that determines // accuracy level. Higher value of k indicates more accuracy. bool isPrime(int n, int k) 1) Handle base cases for n < 3 2) If n is even, return false. 3) Find an odd number d such that n-1 can be written as d*2r. Note that since n is odd, (n-1) must be even and r must be greater than 0. 4) Do following k times if (millerTest(n, d) == false) return false 5) Return true. // This function is called for all k trials. It returns // false if n is composite and returns true if n is probably // prime. // d is an odd number such that d*2r = n-1 for some r>=1 bool millerTest(int n, int d) 1) Pick a random number 'a' in range [2, n-2] 2) Compute: x = pow(a, d) % n 3) If x == 1 or x == n-1, return true. // Below loop mainly runs 'r-1' times. 4) Do following while d doesn't become n-1. a) x = (x*x) % n. b) If (x == 1) return false. c) If (x == n-1) return true.
Example:
Input: n = 13, k = 2. 1) Compute d and r such that d*2r = n-1, d = 3, r = 2. 2) Call millerTest k times. 1st Iteration: 1) Pick a random number 'a' in range [2, n-2] Suppose a = 4 2) Compute: x = pow(a, d) % n x = 43 % 13 = 12 3) Since x = (n-1), return true. IInd Iteration: 1) Pick a random number 'a' in range [2, n-2] Suppose a = 5 2) Compute: x = pow(a, d) % n x = 53 % 13 = 8 3) x neither 1 nor 12. 4) Do following (r-1) = 1 times a) x = (x * x) % 13 = (8 * 8) % 13 = 12 b) Since x = (n-1), return true. Since both iterations return true, we return true.
Implementation:
Below is the implementation of the above algorithm.
C++
// C++ program Miller-Rabin primality test #include <bits/stdc++.h> using namespace std; // Utility function to do modular exponentiation. // It returns (x^y) % p int power( int x, unsigned int y, int p) { int res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if (y & 1) res = (res*x) % p; // y must be even now y = y>>1; // y = y/2 x = (x*x) % p; } return res; } // This function is called for all k trials. It returns // false if n is composite and returns true if n is // probably prime. // d is an odd number such that d*2 = n-1 // for some r >= 1 bool miillerTest( int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + rand () % (n - 4); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n-1) return true ; // Keep squaring x while one of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n-1) { x = (x * x) % n; d *= 2; if (x == 1) return false ; if (x == n-1) return true ; } // Return composite return false ; } // It returns false if n is composite and returns true if n // is probably prime. k is an input parameter that determines // accuracy level. Higher value of k indicates more accuracy. bool isPrime( int n, int k) { // Corner cases if (n <= 1 || n == 4) return false ; if (n <= 3) return true ; // Find r such that n = 2^d * r + 1 for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for ( int i = 0; i < k; i++) if (!miillerTest(d, n)) return false ; return true ; } // Driver program int main() { int k = 4; // Number of iterations cout << "All primes smaller than 100: \n" ; for ( int n = 1; n < 100; n++) if (isPrime(n, k)) cout << n << " " ; return 0; } |
Java
// Java program Miller-Rabin primality test import java.io.*; import java.math.*; class GFG { // Utility function to do modular // exponentiation. It returns (x^y) % p static int power( int x, int y, int p) { int res = 1 ; // Initialize result //Update x if it is more than or // equal to p x = x % p; while (y > 0 ) { // If y is odd, multiply x with result if ((y & 1 ) == 1 ) res = (res * x) % p; // y must be even now y = y >> 1 ; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite and // returns false if n is probably prime. // d is an odd number such that d*2<sup>r</sup> // = n-1 for some r >= 1 static boolean miillerTest( int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 int a = 2 + ( int )(Math.random() % (n - 4 )); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1 ) return true ; // Keep squaring x while one of the // following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1 ) { x = (x * x) % n; d *= 2 ; if (x == 1 ) return false ; if (x == n - 1 ) return true ; } // Return composite return false ; } // It returns false if n is composite // and returns true if n is probably // prime. k is an input parameter that // determines accuracy level. Higher // value of k indicates more accuracy. static boolean isPrime( int n, int k) { // Corner cases if (n <= 1 || n == 4 ) return false ; if (n <= 3 ) return true ; // Find r such that n = 2^d * r + 1 // for some r >= 1 int d = n - 1 ; while (d % 2 == 0 ) d /= 2 ; // Iterate given number of 'k' times for ( int i = 0 ; i < k; i++) if (!miillerTest(d, n)) return false ; return true ; } // Driver program public static void main(String args[]) { int k = 4 ; // Number of iterations System.out.println( "All primes smaller " + "than 100: " ); for ( int n = 1 ; n < 100 ; n++) if (isPrime(n, k)) System.out.print(n + " " ); } } /* This code is contributed by Nikita Tiwari.*/ |
Python3
# Python3 program Miller-Rabin primality test import random # Utility function to do # modular exponentiation. # It returns (x^y) % p def power(x, y, p): # Initialize result res = 1 ; # Update x if it is more than or # equal to p x = x % p; while (y > 0 ): # If y is odd, multiply # x with result if (y & 1 ): res = (res * x) % p; # y must be even now y = y>> 1 ; # y = y/2 x = (x * x) % p; return res; # This function is called # for all k trials. It returns # false if n is composite and # returns false if n is # probably prime. d is an odd # number such that d*2<sup>r</sup> = n-1 # for some r >= 1 def miillerTest(d, n): # Pick a random number in [2..n-2] # Corner cases make sure that n > 4 a = 2 + random.randint( 1 , n - 4 ); # Compute a^d % n x = power(a, d, n); if (x = = 1 or x = = n - 1 ): return True ; # Keep squaring x while one # of the following doesn't # happen # (i) d does not reach n-1 # (ii) (x^2) % n is not 1 # (iii) (x^2) % n is not n-1 while (d ! = n - 1 ): x = (x * x) % n; d * = 2 ; if (x = = 1 ): return False ; if (x = = n - 1 ): return True ; # Return composite return False ; # It returns false if n is # composite and returns true if n # is probably prime. k is an # input parameter that determines # accuracy level. Higher value of # k indicates more accuracy. def isPrime( n, k): # Corner cases if (n < = 1 or n = = 4 ): return False ; if (n < = 3 ): return True ; # Find r such that n = # 2^d * r + 1 for some r >= 1 d = n - 1 ; while (d % 2 = = 0 ): d / / = 2 ; # Iterate given number of 'k' times for i in range (k): if (miillerTest(d, n) = = False ): return False ; return True ; # Driver Code # Number of iterations k = 4 ; print ( "All primes smaller than 100: " ); for n in range ( 1 , 100 ): if (isPrime(n, k)): print (n , end = " " ); # This code is contributed by mits |
C#
// C# program Miller-Rabin primality test using System; class GFG { // Utility function to do modular // exponentiation. It returns (x^y) % p static int power( int x, int y, int p) { int res = 1; // Initialize result // Update x if it is more than // or equal to p x = x % p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) == 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // This function is called for all k trials. // It returns false if n is composite and // returns false if n is probably prime. // d is an odd number such that d*2<sup>r</sup> // = n-1 for some r >= 1 static bool miillerTest( int d, int n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 Random r = new Random(); int a = 2 + ( int )(r.Next() % (n - 4)); // Compute a^d % n int x = power(a, d, n); if (x == 1 || x == n - 1) return true ; // Keep squaring x while one of the // following doesn't happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n - 1) { x = (x * x) % n; d *= 2; if (x == 1) return false ; if (x == n - 1) return true ; } // Return composite return false ; } // It returns false if n is composite // and returns true if n is probably // prime. k is an input parameter that // determines accuracy level. Higher // value of k indicates more accuracy. static bool isPrime( int n, int k) { // Corner cases if (n <= 1 || n == 4) return false ; if (n <= 3) return true ; // Find r such that n = 2^d * r + 1 // for some r >= 1 int d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for ( int i = 0; i < k; i++) if (miillerTest(d, n) == false ) return false ; return true ; } // Driver Code static void Main() { int k = 4; // Number of iterations Console.WriteLine( "All primes smaller " + "than 100: " ); for ( int n = 1; n < 100; n++) if (isPrime(n, k)) Console.Write(n + " " ); } } // This code is contributed by mits |
PHP
<?php // PHP program Miller-Rabin primality test // Utility function to do // modular exponentiation. // It returns (x^y) % p function power( $x , $y , $p ) { // Initialize result $res = 1; // Update x if it is more than or // equal to p $x = $x % $p ; while ( $y > 0) { // If y is odd, multiply // x with result if ( $y & 1) $res = ( $res * $x ) % $p ; // y must be even now $y = $y >>1; // $y = $y/2 $x = ( $x * $x ) % $p ; } return $res ; } // This function is called // for all k trials. It returns // false if n is composite and // returns false if n is // probably prime. d is an odd // number such that d*2<sup>r</sup> = n-1 // for some r >= 1 function miillerTest( $d , $n ) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 $a = 2 + rand() % ( $n - 4); // Compute a^d % n $x = power( $a , $d , $n ); if ( $x == 1 || $x == $n -1) return true; // Keep squaring x while one // of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while ( $d != $n -1) { $x = ( $x * $x ) % $n ; $d *= 2; if ( $x == 1) return false; if ( $x == $n -1) return true; } // Return composite return false; } // It returns false if n is // composite and returns true if n // is probably prime. k is an // input parameter that determines // accuracy level. Higher value of // k indicates more accuracy. function isPrime( $n , $k ) { // Corner cases if ( $n <= 1 || $n == 4) return false; if ( $n <= 3) return true; // Find r such that n = // 2^d * r + 1 for some r >= 1 $d = $n - 1; while ( $d % 2 == 0) $d /= 2; // Iterate given number of 'k' times for ( $i = 0; $i < $k ; $i ++) if (!miillerTest( $d , $n )) return false; return true; } // Driver Code // Number of iterations $k = 4; echo "All primes smaller than 100: \n" ; for ( $n = 1; $n < 100; $n ++) if (isPrime( $n , $k )) echo $n , " " ; // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program Miller-Rabin primality test // Utility function to do // modular exponentiation. // It returns (x^y) % p function power(x, y, p) { // Initialize result let res = 1; // Update x if it is more than or // equal to p x = x % p; while (y > 0) { // If y is odd, multiply // x with result if (y & 1) res = (res*x) % p; // y must be even now y = y>>1; // y = y/2 x = (x*x) % p; } return res; } // This function is called // for all k trials. It returns // false if n is composite and // returns false if n is // probably prime. d is an odd // number such that d*2<sup>r</sup> = n-1 // for some r >= 1 function miillerTest(d, n) { // Pick a random number in [2..n-2] // Corner cases make sure that n > 4 let a = 2 + Math.floor(Math.random() * (n-2)) % (n - 4); // Compute a^d % n let x = power(a, d, n); if (x == 1 || x == n-1) return true ; // Keep squaring x while one // of the following doesn't // happen // (i) d does not reach n-1 // (ii) (x^2) % n is not 1 // (iii) (x^2) % n is not n-1 while (d != n-1) { x = (x * x) % n; d *= 2; if (x == 1) return false ; if (x == n-1) return true ; } // Return composite return false ; } // It returns false if n is // composite and returns true if n // is probably prime. k is an // input parameter that determines // accuracy level. Higher value of // k indicates more accuracy. function isPrime( n, k) { // Corner cases if (n <= 1 || n == 4) return false ; if (n <= 3) return true ; // Find r such that n = // 2^d * r + 1 for some r >= 1 let d = n - 1; while (d % 2 == 0) d /= 2; // Iterate given number of 'k' times for (let i = 0; i < k; i++) if (!miillerTest(d, n)) return false ; return true ; } // Driver Code // Number of iterations let k = 4; document.write( "All primes smaller than 100: <br>" ); for (let n = 1; n < 100; n++) if (isPrime(n, k)) document.write(n , " " ); // This code is contributed by gfgking </script> |
Output:
All primes smaller than 100: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Time Complexity: O(k*logn)
Auxiliary Space: O(1)
How does this work?
Below are some important facts behind the algorithm:
- Fermat’s theorem states that, If n is a prime number, then for every a, 1 <= a < n, an-1 % n = 1
- Base cases make sure that n must be odd. Since n is odd, n-1 must be even. And an even number can be written as d * 2s where d is an odd number and s > 0.
- From the above two points, for every randomly picked number in the range [2, n-2], the value of ad*2r % n must be 1.
- As per Euclid’s Lemma, if x2 % n = 1 or (x2 – 1) % n = 0 or (x-1)(x+1)% n = 0. Then, for n to be prime, either n divides (x-1) or n divides (x+1). Which means either x % n = 1 or x % n = -1.
- From points 2 and 3, we can conclude
For n to be prime, either ad % n = 1 OR ad*2i % n = -1 for some i, where 0 <= i <= r-1.
Next Article :
Primality Test | Set 4 (Solovay-Strassen)
This article is contributed Ruchir Garg. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!