Monday, January 13, 2025
Google search engine
HomeData Modelling & AIPrefixes with more a than b

Prefixes with more a than b

Given a string S consisting of only characters ‘a’ and ‘b’, and an integer N. The string S is added N times to obtain string T. Your task is to count the number of prefixes where number of a is strictly greater than b. 
string T = S + S + S + S ……. N times.

Examples :  

Input : aba 2
Output : 5
Explanation : 
The string T is "abaaba". It has five prefixes
which contain more a-s than b-s: "a", "aba", 
"abaa", "abaab" and "abaaba".

Input : baa 3
Output : 6
Explanation : The string T is "baabaabaa". The strings 
"baa", "baaba", "baabaa", "baabaab", "baabaaba" and 
"baabaabaa" are the six valid prefixes.

Naive approach : A simple way to do this program is to generate the entire string T and then run a loop checking for valid prefixes where number of a is greater than number of b. If value of N is very large, this method is not efficient and yet time consuming. 

Efficient Approach : 

Note that the string is repetitive. So, we do not have to check for the entire string T. 
Operate on string S. Let, 
count = Number of Prefixes in string S 
A = Frequency of character ‘a’ in string S 
B = Frequency of character ‘b’ in string S

CASE 1: count == 0 

  • If a number of valid prefixes is zero. Then, even if we generate the entire String T. Number of valid prefixes will still be zero.

CASE 2: count >0 

This case has three sub-cases: 

  1. A == B 
    • In this case, there is no effect of previous concatenations of S on incoming/new concatenation of S. In other words, when A != B, then there is some change in the value of (A-B) after each addition of S to T, which affect the contribution of any future concatenation of S towards count. It means that since A == B, then number of b in T will not increase at same rate as number of an at each addition, which will affect the contribution of next addition to the final answer. This is not the case when A == B . Hence, each addition of S will contribute count towards the final answer. There are N addition of S and we already found count by simple looping earlier. Hence, for this case, Answer = count * N.
  2. A < B 
    • In this case, because A < B, each new addition of S to T will decrease A-B .In other words, the number of b in T will increase more quickly than number of a, which will reduce the contribution of every future addition of S toward the final answer. We see that, after every addition, the contribution of next addition must reduce by atleast 1. So gradually the count per new string will converge to zero. So we have to check until that happens.
      For example, Say count of string S converges to zero after 1000 addition. If N = 99999, we just have to check till 1000 and ignore rest of the cases. If N = 5, we have to calculate till 5 additions.
  3.  A > B
    • Clearly, each new addition of S to T will increase A-B. Thus, the number of a in T will increase more quickly than number of b, which will increase the contribution of every future addition of S towards final answer. The maximum possible contribution of an addition to our answer can be |S|, i.e. the length of string S. So the count per string will saturate to length of the string after some additions. We have to check until that happens. 
    • For example: Say count of string S saturates to length of S after X additions. So, we have to calculate count till X, then add the residue which is equal to (N-X)*length of S (if N>X) 
      if N<X then we have to calculate till N additions.

Below is the implementation of above approach: 

C++




// CPP code to count the prefixes
// with more a than b
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to count prefixes
int prefix(string k, int n)
{
    int a = 0, b = 0, count = 0;
    int i = 0;
    int len = k.size();
 
    // calculating for string S
    for (i = 0; i < len; i++) {
        if (k[i] == 'a')
            a++;
 
        if (k[i] == 'b')
            b++;
 
        if (a > b) {
            count++;
        }
    }
 
    // count==0 or when N==1
    if (count == 0 || n == 1) {
        cout << count << endl;
        return 0;
    }
 
    // when all characters are a or a-b==0
    if (count == len || a - b == 0) {
        cout << count * n << endl;
        return 0;
    }
 
    int n2 = n - 1, count2 = 0;
 
    // checking for saturation of
    // string after repetitive addition
    while (n2 != 0) {
        for (i = 0; i < len; i++) {
            if (k[i] == 'a')
                a++;
 
            if (k[i] == 'b')
                b++;
 
            if (a > b) {
                count2++;
            }
        }
 
        count += count2;
        n2--;
 
        if (count2 == 0)
            break;
 
        if (count2 == len) {
            count += (n2 * count2);
            break;
        }
 
        count2 = 0;
    }
 
    return count;
}
 
// Driver function
int main()
{
    string S = "aba";
    int N = 2;
    cout << prefix(S, N) << endl;
 
    S = "baa";
    N = 3;
    cout << prefix(S, N) << endl;
 
    return 0;
}


Java




// Java code to count the
// prefixes with more a than b
import java.io.*;
 
class GFG
{
 
// Function to
// count prefixes
static int prefix(String k, int n)
{
    int a = 0, b = 0,
               count = 0;
    int i = 0;
    int len = k.length();
 
    // calculating for string S
    for (i = 0; i < len; i++)
    {
        if (k.charAt(i) == 'a')
            a++;
 
        if (k.charAt(i) == 'b')
            b++;
 
        if (a > b)
        {
            count++;
        }
    }
 
    // count==0 or when N==1
    if (count == 0 || n == 1)
    {
        System.out.println(count);
        return 0;
    }
 
    // when all characters
    // are a or a-b==0
    if (count == len || a - b == 0)
    {
        System.out.println(count * n);
        return 0;
    }
 
    int n2 = n - 1, count2 = 0;
 
    // checking for saturation
    // of string after repetitive
    // addition
    while (n2 != 0)
    {
        for (i = 0; i < len; i++)
        {
            if (k.charAt(i) == 'a')
                a++;
 
            if (k.charAt(i) == 'b')
                b++;
 
            if (a > b)
            {
                count2++;
            }
        }
 
        count += count2;
        n2--;
 
        if (count2 == 0)
            break;
 
        if (count2 == len)
        {
            count += (n2 * count2);
            break;
        }
 
        count2 = 0;
    }
 
    return count;
}
 
// Driver Code
public static void main (String[] args)
{
    String S = "aba";
    int N = 2;
    System.out.println(prefix(S, N));
     
    S = "baa";
    N = 3;
    System.out.println(prefix(S, N)) ;
}
}
 
// This code is contributed
// by anuj_67.


Python3




# Python3 code to count the prefixes
# with more a than b
 
# Function to count prefixes
def prefix(k, n):
 
    a = 0
    b = 0
    count = 0
    i = 0
    Len = len(k)
 
    # calculating for string S
    for i in range(Len):
        if (k[i] == "a"):
            a += 1
 
        if (k[i] == "b"):
            b += 1
 
        if (a > b) :
            count += 1
         
    # count==0 or when N==1
    if (count == 0 or n == 1):
        print(count)
        return 0
 
    # when all characters are a or a-b==0
    if (count == Len or a - b == 0) :
        print(count * n)
        return 0
 
    n2 = n - 1
    count2 = 0
 
    # checking for saturation of
    # string after repetitive addition
    while (n2 != 0):
        for i in range(Len):
            if (k[i] == "a"):
                a += 1
 
            if (k[i] == "b"):
                b += 1
 
            if (a > b):
                count2 += 1
             
        count += count2
        n2 -= 1
 
        if (count2 == 0):
            break
 
        if (count2 == Len):
            count += (n2 * count2)
            break
         
        count2 = 0
     
    return count
 
# Driver Code
S = "aba"
N = 2
print(prefix(S, N))
 
S = "baa"
N = 3
print(prefix(S, N))
 
# This code is contributed by
# Mohit kumar 29


C#




// C# code to count the
// prefixes with more
// a than b
using System;
 
class GFG
{
 
// Function to
// count prefixes
static int prefix(String k, int n)
{
    int a = 0, b = 0,
        count = 0;
    int i = 0;
    int len = k.Length;
 
    // calculating for string S
    for (i = 0; i < len; i++)
    {
        if (k[i] == 'a')
            a++;
 
        if (k[i] == 'b')
            b++;
 
        if (a > b)
        {
            count++;
        }
    }
 
    // count==0 or when N==1
    if (count == 0 || n == 1)
    {
        Console.WriteLine(count);
        return 0;
    }
 
    // when all characters
    // are a or a-b==0
    if (count == len ||
        a - b == 0)
    {
        Console.WriteLine(count * n);
        return 0;
    }
 
    int n2 = n - 1, count2 = 0;
 
    // checking for saturation
    // of string after repetitive
    // addition
    while (n2 != 0)
    {
        for (i = 0; i < len; i++)
        {
            if (k[i] == 'a')
                a++;
 
            if (k[i] == 'b')
                b++;
 
            if (a > b)
            {
                count2++;
            }
        }
 
        count += count2;
        n2--;
 
        if (count2 == 0)
            break;
 
        if (count2 == len)
        {
            count += (n2 * count2);
            break;
        }
 
        count2 = 0;
    }
 
    return count;
}
 
// Driver Code
public static void Main ()
{
    string S = "aba";
    int N = 2;
    Console.WriteLine(prefix(S, N));
     
    S = "baa";
    N = 3;
    Console.WriteLine(prefix(S, N)) ;
}
}
 
// This code is contributed
// by anuj_67.


PHP




<?php
// PHP code to count the
// prefixes with more a than b
 
// Function to count prefixes
function prefix($k, $n)
{
    $a = 0; $b = 0; $count = 0;
    $i = 0;
    $len = strlen($k);
 
    // calculating for string S
    for ($i = 0; $i < $len; $i++)
    {
        if ($k[$i] == 'a')
            $a++;
 
        if ($k[$i] == 'b')
            $b++;
 
        if ($a > $b)
        {
            $count++;
        }
    }
 
    // count==0 or when N==1
    if ($count == 0 || $n == 1)
    {
        echo($count);
        return 0;
    }
 
    // when all characters
    // are a or a-b==0
    if ($count == $len || $a - $b == 0)
    {
        echo($count * $n);
        return 0;
    }
 
    $n2 = $n - 1; $count2 = 0;
 
    // checking for saturation
    // of string after repetitive
    // addition
    while ($n2 != 0)
    {
        for ($i = 0; $i < $len; $i++)
        {
            if ($k[$i] == 'a')
                $a++;
 
            if ($k[$i] == 'b')
                $b++;
 
            if ($a > $b)
            {
                $count2++;
            }
        }
 
        $count += $count2;
        $n2--;
 
        if ($count2 == 0)
            break;
 
        if ($count2 == $len)
        {
            $count += ($n2 * $count2);
            break;
        }
 
        $count2 = 0;
    }
 
    return $count;
}
 
// Driver Code
$S = "aba";
$N = 2;
echo(prefix($S,$N)."\n");
 
$S = "baa";
$N = 3;
echo(prefix($S, $N)."\n");
 
// This code is contributed
// by Mukul Singh.


Javascript




<script>
// Javascript code to count the
// prefixes with more a than b
 
// Function to
// count prefixes
function prefix(k,n)
{
    let a = 0, b = 0,
               count = 0;
    let i = 0;
    let len = k.length;
   
    // calculating for string S
    for (i = 0; i < len; i++)
    {
        if (k[i] == 'a')
            a++;
   
        if (k[i] == 'b')
            b++;
   
        if (a > b)
        {
            count++;
        }
    }
   
    // count==0 or when N==1
    if (count == 0 || n == 1)
    {
        document.write(count+"<br>");
        return 0;
    }
   
    // when all characters
    // are a or a-b==0
    if (count == len || a - b == 0)
    {
        document.write((count * n)+"<br>");
        return 0;
    }
   
    let n2 = n - 1, count2 = 0;
   
    // checking for saturation
    // of string after repetitive
    // addition
    while (n2 != 0)
    {
        for (i = 0; i < len; i++)
        {
            if (k[i] == 'a')
                a++;
   
            if (k[i] == 'b')
                b++;
   
            if (a > b)
            {
                count2++;
            }
        }
   
        count += count2;
        n2--;
   
        if (count2 == 0)
            break;
   
        if (count2 == len)
        {
            count += (n2 * count2);
            break;
        }
   
        count2 = 0;
    }
   
    return count;
}
 
// Driver Code
let S = "aba";
let N = 2;
document.write(prefix(S, N)+"<br>");
     
S = "baa";
N = 3;
document.write(prefix(S, N)+"<br>") ;
 
// This code is contributed by patel2127
</script>


Output

5
6

Time Complexity: O(L * N), where L is the length of the given string and N is the given input.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments