Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIPre-Order Successor of all nodes in Binary Search Tree

Pre-Order Successor of all nodes in Binary Search Tree

Consider a BST(Binary Search Tree) where duplicates are not allowed.
Given a key present in the BST. The task is to find its pre-order successor in this BST i.e. the task is to find a key that comes next to the given key if we apply a pre-order traversal on given BST.

Example: 
Insert the following keys in a BST in the same order: 51, 39, 31, 54, 92, 42, 21, 10, 26, 52, 36, 47, 82, 5, 62.
You will end up with a BST as shown below: 
 

Binary Search Tree formed after inserting the given data.

Pre-Order Traversal : 51 39 31 21 10 5 26 36 42 47 54 52 92 82 62 
 

=====================================
Key       Pre-Order Successor
=====================================
51        39
39        31
31        21
21        10 
10        5
5         26
26        36
36        42
42        47
47        54
52        92
92        82
82        62
62        Do Not Exist. 

Simple Approach: A simple and easy way to solve this problem is to apply pre-order traversal on given BST and store the keys of BST in an array. Next, search for the given key in array. If it exists then its next key(which may not necessarily exist) is its pre-order successor. If given key does not exist in the array that means given key does not exist in BST and hence there cannot be any pre-order successor for this key.
But this algorithm has a time-complexity of O(n). And space complexity of O(n) and hence it is not a good way to approach for this problem.

Efficient Approach: An efficient way to approach this problem is based on the following observations: 

  • Search for a node in BST that contains the given key. 
    • If it does not exist in BST then there cannot be any pre-order successor for this key.
    • If it exists in BST then there can be a pre-order successor for this key. Note that it is not necessary that if a key exists then it has a pre-order successor. It depends on the position of a given key in BST
  • If node containing the given key has a left child then its left child is its pre-order successor.
  • If node containing the given has a right but not left child then its right child is its pre-order successor.
  • If node containing the given key is a leaf then you have to search for its nearest ancestor that has a right child and key of this ancestor is greater than the given key i.e. you have to search for its nearest ancestor in left subtree of which the given key exist. Further two cases are there: 
    • Such an ancestor exist, if so then the right child of this ancestor is the pre-order successor of the given key.
    • Such an ancestor do not exist, if so then there is no pre-order successor for the given key.

Below is the implementation of the above approach :  

C++




// C++ program to find pre-Order successor
// of a node in Binary Search Tree
#include <iostream>
using namespace std;
 
// Declare a structure
struct Node
{
     
    // Key to be stored in BST
    int key;
 
    // Pointer to left child
    struct Node *left;
 
    // Pointer to the right child
    struct Node *right;
     
    // Pointer to parent
    struct Node *parent;
};
 
// This function inserts node in BST
struct Node* insert(int key, struct Node *root,
                             struct Node *parent)
{
     
    // If root is NULL, insert key here
    if (!root)
    {
         
        // Allocate memory dynamically
        struct Node *node = (struct Node*)malloc(
                      sizeof(struct Node));
 
        // Validate malloc call
        if (node)
        {
             
            // Populate the object pointer to by
            // pointer named node
            node->key = key;
            node->left = node->right = NULL;
            node->parent = parent;
 
            // Return newly created node
            return node;
        }
        else
         
            // Malloc was not successful to satisfy
            // our request, given an appropriate
            // message to the user
            cout << "Could not allocate memory.";
    }
     
    // If this is a duplicate key then give
    // a message to user
    else if (key == root->key)
        cout <<"Duplicates are not allowed in BST.";
     
    // If the key to be inserted is greater than the
    // root's key then it will go to the right subtree of
    // the tree with current root
    else if (key > root->key)
        root->right = insert(key, root->right,root);
     
    // If the key to be inserted is smaller than the
    // root's key then it will go to a left subtree of
    // the tree with current root
    else
        root->left = insert(key, root->left, root);
     
    // Return the root
    return root;
}
 
// This function searched for a given key in BST
struct Node* search(int key, struct Node *root)
{
     
    // Since the root is empty and hence key
    // does not exist in BST
    if (!root)
        return NULL;
     
    // Current root contains the given key,
    // so return current root
    else if (key == root->key)
        return root;
     
    // Key is greater than the root's key and
    // therefore we will search for this key in
    // the right subtree of tree with root as
    // current root because of all of the keys
    // which are greater than the root's key
    // exist in the right subtree   
    else if (key > root->key)
        return search(key, root->right);
     
    // Key is smaller than the root's key and
    // therefore we will search for this key
    // in the left subtree of the tree with
    // root as the current root because of
    // all of the keys which are smaller
    // than the root's key exists in the
    // left subtree search tree in the left subtree
    else
        return search(key, root->left);
}
 
// This function returns the node that contains the
// pre-order successor for the given key
struct Node* preOrderSuccessor(int key, struct Node *root)
{
     
    // Search for a node in BST that contains
    // the given key
    struct Node *node = search(key, root);
 
    // There is no node in BST that contains
    // the given key, give an appropriate message to user
    if (!node)
    {
        cout << " do not exists in BST.\n" << key;
        return NULL;
    }
 
    // There exist a node in BST that contains
    // the given key Apply our observations
    if (node->left)
     
        // If left child of the node that contains the
        // given key exist then it is the pre-order
        // successor for the given key
        return node->left;
 
    else if (node->right)
     
        // If right but not left child of node that
        // contains the given key exist then it is
        // the pre-order successor for the given key
        return node->right;
 
    else
    {
         
        // Node containing the key has neither left
        // nor right child which means that it is
        // leaf node. In this case we will search
        // for its nearest ancestor with right
        // child which has a key greater than
        // the given key
 
        // Since node is a leaf node so its
        // parent is guaranteed to exist
        struct Node *temp = node->parent;
 
        // Search for nearest ancestor with right
        // child that has key greater than the given key
        while (temp)
        {
            if (key < temp->key && temp->right)
                break;
                 
            temp = temp->parent;
        }
 
        // If such an ancestor exist then right child
        // of this ancestor is the pre-order successor
        // for the given otherwise there do not exist
        // any pre-order successor for the given key
        return temp ? temp->right : NULL;
    }
}
 
// This function traverse the BST in
// pre-order fashion
void preOrder(struct Node *root)
{
    if (root)
    {
         
        // First visit the root
        cout << " " << root->key;
         
        // Next visit its left subtree
        preOrder(root->left);
         
        // Finally visit its right subtree
        preOrder(root->right);
    }
}
 
// Driver code
int main()
{
     
    // Declares a root for our BST
    struct Node *ROOT = NULL;
 
    // We will create 15 random integers in
    // range 0-99 to populate our BST
    int a[] = { 51, 39, 31, 54, 92, 42, 21, 10,
                26, 52, 36, 47, 82, 5, 62 };
 
    int n = sizeof(a) / sizeof(a[0]);
     
    // Insert all elements into BST
    for(int i = 0 ; i < n; i++)
    {
         
        // Insert the generated number in BST
        cout << "Inserting " << a[i] << " ....." ;
         
        ROOT = insert(a[i], ROOT, NULL);
        cout << "Finished Insertion.\n";
    }
 
    // Apply pre-order traversal on BST
    cout << "\nPre-Order Traversal : ";
    preOrder(ROOT);
 
    // Display pre-order Successors for
    // all of the keys in BST
    cout <<"\n=====================================";
    cout <<"\n\n" << "Key" <<"   " << "Pre-Order Successor" << endl;
    cout <<"=====================================\n";
 
    // This stores the pre-order successor
    // for a given key
    struct Node *successor = NULL;
 
    // Iterate through all of the elements inserted
    // in BST to get their pre-order successor
    for(int i = 0 ; i < n; ++i)
    {
         
        // Get the pre-order successor for the given key
        successor = preOrderSuccessor(a[i], ROOT);
 
        if (successor)
         
            // Successor is not NULL and hence it contains
            // the pre-order successor for given key
            cout << "\n" << a[i] << "      "
                 << successor->key;
        else
         
            // Successor is NULL and hence given key do
            // not have a pre-order successor
            cout << " " << "Do Not Exist.\n" << a[i];
    }
    return 0;
}
 
// This code is contributed by shivanisinghss2110


C




// C program to find pre-Order successor
// of a node in Binary Search Tree
#include<stdio.h>
#include<stdlib.h>
 
// Declare a structure
struct Node{
    // Key to be stored in BST
    int key;
 
    // Pointer to left child
    struct Node *left;
 
    // Pointer to the right child
    struct Node *right;
     
    // Pointer to parent
    struct Node *parent;
};
 
// This function inserts node in BST
struct Node* insert(int key, struct Node *root,
                                   struct Node *parent)
{
     
    // If root is NULL, insert key here
    if(!root)
    {
        // Allocate memory dynamically
        struct Node *node = (struct Node*)malloc(sizeof(struct Node));
 
        // Validate malloc call
        if(node)
        {
            // Populate the object pointer to by
            // pointer named node
            node->key = key;
            node->left = node->right = NULL;
            node->parent = parent;
 
            // Return newly created node
            return node;
             
        }
        else
            // Malloc was not successful to satisfy our request,
            // given an appropriate message to the user
            printf("Could not allocate memory.");
         
    }
     
    // If this is a duplicate key then give a message to user
    else if(key == root->key)
        printf("Duplicates are not allowed in BST.");
     
    // If the key to be inserted is greater than the root's
    // key then it will go to the right subtree of
    // the tree with current root
    else if(key > root->key)
        root->right = insert(key, root->right,root);
     
    // If the key to be inserted is smaller than the
    // root's key then it will go to a left subtree of
    // the tree with current root
    else
        root->left = insert(key, root->left, root);
     
    // Return the root
    return root;
}
 
// This function searched for a given key in BST
struct Node* search(int key, struct Node *root)
{
    // Since the root is empty and hence key
    // does not exist in BST
    if(!root)
        return NULL;
     
    // Current root contains the given key,
    // so return current root
    else if( key == root->key)
        return root;
     
    // Key is greater than the root's key and therefore
    // we will search for this key in the right subtree of
    // tree with root as current root because of all of the keys
    // which are greater than the root's key exist in the right subtree   
    else if(key > root->key)
        return search(key, root->right);
     
    // Key is smaller than the root's key and therefore we will
    // search for this key in the left subtree of the tree with
    // root as the current root because of all of the keys which are
    // smaller than the root's key exists in the left subtree
    // search tree in the left subtree
    else
        return search(key, root->left);
     
}
 
// This function returns the node that contains the
// pre-order successor for the given key
struct Node* preOrderSuccessor(int key, struct Node *root){
 
    // Search for a node in BST that contains the given key
    struct Node *node = search(key, root);
 
    // There is no node in BST that contains the given key,
    // give an appropriate message to user
    if(!node){
        printf("%d do not exists in BST.\n", key);
        return NULL;
    }
 
 
    // There exist a node in BST that contains the given key
    // Apply our observations
    if(node->left)
        // If left child of the node that contains the
        // given key exist then it is the pre-order
        // successor for the given key
        return node->left;
 
    else if(node->right)
        // If right but not left child of node that contains
        // the given key exist then it is the pre-order
        // successor for the given key
        return node->right;
 
    else
    {
        // Node containing the key has neither left nor right child
        // which means that it is leaf node. In this case we will search
        // for its nearest ancestor with right child which has a key
        // greater than the given key
 
        // Since node is a leaf node so its parent is guaranteed to exist
        struct Node *temp = node->parent;
 
        // Search for nearest ancestor with right child that has
        // key greater than the given key
        while(temp){
            if(key < temp->key && temp->right)
                break;
            temp = temp->parent;
        }
 
        // If such an ancestor exist then right child of this ancestor
        // is the pre-order successor for the given otherwise there
        // do not exist any pre-order successor for the given key
        return temp ? temp->right : NULL;
    }
}
 
// This function traverse the BST in pre-order fashion
void preOrder(struct Node *root)
{
    if(root)
    {
        // First visit the root
        printf("%d ", root->key);
         
        // Next visit its left subtree
        preOrder(root->left);
         
        // Finally visit its right subtree
        preOrder(root->right);
    }
}
 
// Driver code
int main()
{
    // Declares a root for our BST
    struct Node *ROOT = NULL;
 
    // We will create 15 random integers in
    // range 0-99 to populate our BST
    int a[] = {51, 39, 31, 54, 92, 42, 21, 10,
                          26, 52, 36, 47, 82, 5, 62};
 
    int n = sizeof(a) / sizeof(a[0]);
     
    // Insert all elements into BST
    for(int i = 0 ; i < n; i++)
    {
        // Insert the generated number in BST
        printf("Inserting %2d.....", a[i]);
         
        ROOT = insert(a[i], ROOT, NULL);
        printf("Finished Insertion.\n");
    }
 
    // Apply pre-order traversal on BST
    printf("\nPre-Order Traversal : ");
    preOrder(ROOT);
 
    // Display pre-order Successors for all of the keys in BST
    printf("\n=====================================");
    printf("\n%-10s%s\n", "Key", "Pre-Order Successor");
    printf("=====================================\n");
 
    // This stores the pre-order successor for a given key
    struct Node *successor = NULL;
 
    // Iterate through all of the elements inserted
    // in BST to get their pre-order successor
    for(int i = 0 ; i < n; ++i)
    {
        // Get the pre-order successor for the given key
        successor = preOrderSuccessor(a[i], ROOT);
 
        if(successor)
            // Successor is not NULL and hence it contains
            // the pre-order successor for given key
            printf("%-10d%d\n", a[i], successor->key);
        else
            // Successor is NULL and hence given key do
            // not have a pre-order successor
            printf("%-10dDo Not Exist.\n", a[i]);
    }
 
    return 0;
}


Java




// Java program to find pre-Order successor
// of a node in Binary Search Tree
import java.util.*;
 
class GFG
{
 
// Declare a structure
static class Node
{
    // Key to be stored in BST
    int key;
 
    // Pointer to left child
    Node left;
 
    // Pointer to the right child
    Node right;
     
    // Pointer to parent
    Node parent;
};
 
// This function inserts node in BST
static Node insert(int key, Node root,
                            Node parent)
{
     
    // If root is null, insert key here
    if(root == null)
    {
        // Allocate memory dynamically
        Node node = new Node();
 
        // Validate malloc call
        if(node != null)
        {
            // Populate the object pointer to by
            // pointer named node
            node.key = key;
            node.left = node.right = null;
            node.parent = parent;
 
            // Return newly created node
            return node;
             
        }
        else
         
            // Malloc was not successful to
            // satisfy our request, given
            // an appropriate message to the user
            System.out.printf("Could not allocate memory.");
    }
     
    // If this is a duplicate key then
    // give a message to user
    else if(key == root.key)
        System.out.printf("Duplicates are not" +
                            " allowed in BST.");
     
    // If the key to be inserted is greater than
    // the root's key then it will go to the
    // right subtree of the tree with current root
    else if(key > root.key)
        root.right = insert(key, root.right, root);
     
    // If the key to be inserted is smaller than the
    // root's key then it will go to a left subtree
    // of the tree with current root
    else
        root.left = insert(key, root.left, root);
     
    // Return the root
    return root;
}
 
// This function searched for a given key in BST
static Node search(int key, Node root)
{
    // Since the root is empty and hence
    // key does not exist in BST
    if(root == null)
        return null;
     
    // Current root contains the given key,
    // so return current root
    else if( key == root.key)
        return root;
     
    // Key is greater than the root's key and 
    // therefore we will search for this key
    // in the right subtree of tree with root
    // as current root because of all of the keys
    // which are greater than the root's key
    // exist in the right subtree
    else if(key > root.key)
        return search(key, root.right);
     
    // Key is smaller than the root's key and
    // therefore we will search for this key
    // in the left subtree of the tree with root
    // as the current root because of all of the keys
    // which are smaller than the root's key exists in
    // the left subtree search tree in the left subtree
    else
        return search(key, root.left);
}
 
// This function returns the node
// that contains the pre-order successor
// for the given key
static Node preOrderSuccessor(int key,
                              Node root)
{
 
    // Search for a node in BST
    // that contains the given key
    Node node = search(key, root);
 
    // There is no node in BST
    // that contains the given key,
    // give an appropriate message to user
    if(node == null)
    {
        System.out.printf("%d do not exists" +
                           " in BST.\n", key);
        return null;
    }
 
    // There exist a node in BST that contains
    // the given key. Apply our observations
    if(node.left != null)
     
        // If left child of the node that
        // contains the given key exist
        // then it is the pre-order successor
        // for the given key
        return node.left;
 
    else if(node.right != null)
     
        // If right but not left child of node
        // that contains the given key exist 
        // then it is the pre-order successor
        // for the given key
        return node.right;
 
    else
    {
        // Node containing the key has neither left
        // nor right child which means that it is
        // leaf node. In this case we will search
        // for its nearest ancestor with right child
        // which has a key greater than the given key
 
        // Since node is a leaf node
        // so its parent is guaranteed to exist
        Node temp = node.parent;
 
        // Search for nearest ancestor with right child
        // that has key greater than the given key
        while(temp != null)
        {
            if(key < temp.key && temp.right != null)
                break;
            temp = temp.parent;
        }
 
        // If such an ancestor exist then right child
        // of this ancestor is the pre-order successor
        // for the given otherwise there do not exist
        // any pre-order successor for the given key
        return temp != null ? temp.right : null;
    }
}
 
// This function traverse the BST
// in pre-order fashion
static void preOrder(Node root)
{
    if(root != null)
    {
        // First visit the root
        System.out.printf("%d ", root.key);
         
        // Next visit its left subtree
        preOrder(root.left);
         
        // Finally visit its right subtree
        preOrder(root.right);
    }
}
 
// Driver code
public static void main(String args[])
{
    // Declares a root for our BST
    Node ROOT = null;
 
    // We will create 15 random integers in
    // range 0-99 to populate our BST
    int a[] = {51, 39, 31, 54, 92, 42, 21, 10,
                26, 52, 36, 47, 82, 5, 62};
 
    int n = a.length;
     
    // Insert all elements into BST
    for(int i = 0 ; i < n; i++)
    {
        // Insert the generated number in BST
        System.out.printf("Inserting %2d.....", a[i]);
         
        ROOT = insert(a[i], ROOT, null);
        System.out.printf("Finished Insertion.\n");
    }
 
    // Apply pre-order traversal on BST
    System.out.printf("\nPre-Order Traversal : ");
    preOrder(ROOT);
 
    // Display pre-order Successors
    // for all of the keys in BST
    System.out.printf("\n=====================================");
    System.out.printf("\n%-10s%s\n", "Key",
                    "Pre-Order Successor");
    System.out.printf("=====================================\n");
 
    // This stores the pre-order successor
    // for a given key
    Node successor = null;
 
    // Iterate through all of the elements inserted
    // in BST to get their pre-order successor
    for(int i = 0 ; i < n; ++i)
    {
        // Get the pre-order successor
        // for the given key
        successor = preOrderSuccessor(a[i], ROOT);
 
        if(successor != null)
         
            // Successor is not null and hence
            // it contains the pre-order
            // successor for given key
            System.out.printf("%-10d%d\n", a[i],
                                 successor.key);
        else
            // Successor is null and hence given key do
            // not have a pre-order successor
            System.out.printf("%-10dDo Not Exist.\n", a[i]);
    }
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 program to find pre-Order successor
# of a node in Binary Search Tree
 
# Declare a structure
class Node:
     
    def __init__(self):
         
        # Key to be stored in BST
        self.key = 0
 
        # Pointer to left child
        self.left = None
 
        # Pointer to the right child
        self.right = None
 
        # Pointer to parent
        self.parent = None
 
# This function inserts node in BST
def insert(key: int, root: Node, parent: Node):
     
    # If root is None, insert key here
    if not root:
 
        # Allocate memory dynamically
        node = Node()
 
        # Validate malloc call
        if (node):
 
            # Populate the object pointer to by
            # pointer named node
            node.key = key
            node.left = node.right = None
            node.parent = parent
 
            # Return newly created node
            return node
 
        else:
             
            # Malloc was not successful to satisfy our request,
            # given an appropriate message to the user
            print("Could not allocate memory.")
 
    # If this is a duplicate key then give a message to user
    elif (key == root.key):
        print("Duplicates are not allowed in BST.")
 
    # If the key to be inserted is greater than the root's
    # key then it will go to the right subtree of
    # the tree with current root
    elif (key > root.key):
        root.right = insert(key, root.right, root)
 
    # If the key to be inserted is smaller than the
    # root's key then it will go to a left subtree of
    # the tree with current root
    else:
        root.left = insert(key, root.left, root)
 
    # Return the root
    return root
 
# This function searched for a given key in BST
def search(key: int, root: Node):
 
    # Since the root is empty and hence key
    # does not exist in BST
    if not root:
        return None
 
    # Current root contains the given key,
    # so return current root
    elif (key == root.key):
        return root
 
    # Key is greater than the root's key and therefore
    # we will search for this key in the right subtree
    # of tree with root as current root because of all
    # of the keys which are greater than the root's key
    # exist in the right subtree
    elif (key > root.key):
        return search(key, root.right)
 
    # Key is smaller than the root's key and therefore
    # we will search for this key in the left subtree
    # of the tree with root as the current root because
    # of all of the keys which are smaller than the
    # root's key exists in the left subtree search
    # tree in the left subtree
    else:
        return search(key, root.left)
 
# This function returns the node that contains the
# pre-order successor for the given key
def preOrderSuccessor(key: int, root: Node):
     
    # Search for a node in BST that
    # contains the given key
    node = search(key, root)
 
    # There is no node in BST that contains
    # the given key, give an appropriate
    # message to user
    if not node:
        print("%d do not exists in BST.\n" % key, end = "")
        return None
 
    # There exist a node in BST that contains the
    # given key. Apply our observations
    if (node.left):
         
        # If left child of the node that contains the
        # given key exist then it is the pre-order
        # successor for the given key
        return node.left
 
    elif (node.right):
         
        # If right but not left child of node that
        # contains the given key exist then it is
        # the pre-order successor for the given key
        return node.right
 
    else:
 
        # Node containing the key has neither left
        # nor right child which means that it is
        # leaf node. In this case we will search
        # for its nearest ancestor with right
        # child which has a key greater than
        # the given key
 
        # Since node is a leaf node so its parent
        # is guaranteed to exist
        temp = node.parent
 
        # Search for nearest ancestor with right
        # child that has key greater than the
        # given key
        while (temp):
            if (key < temp.key and temp.right):
                break
             
            temp = temp.parent
 
        # If such an ancestor exist then right child
        # of this ancestor is the pre-order successor
        # for the given otherwise there do not exist
        # any pre-order successor for the given key
        return temp.right if temp != None else None
 
# This function traverse the BST in
# pre-order fashion
def preOrder(root: Node):
 
    if (root):
         
        # First visit the root
        print("%d " % root.key, end = "")
 
        # Next visit its left subtree
        preOrder(root.left)
 
        # Finally visit its right subtree
        preOrder(root.right)
 
# Driver code
if __name__ == "__main__":
 
    # Declares a root for our BST
    ROOT = None
 
    # We will create 15 random integers in
    # range 0-99 to populate our BST
    a = [ 51, 39, 31, 54, 92, 42, 21,
          10, 26, 52, 36, 47, 82, 5, 62 ]
 
    n = len(a)
 
    # Insert all elements into BST
    for i in range(n):
 
        # Insert the generated number in BST
        print("Inserting %2d....." % a[i], end = "")
 
        ROOT = insert(a[i], ROOT, None)
        print("Finished Insertion.")
 
    # Apply pre-order traversal on BST
    print("\nPre-Order Traversal : ", end = "")
    preOrder(ROOT)
 
    # Display pre-order Successors for all of the keys in BST
    print("\n=====================================", end = "")
    print("\n%-10s%s\n" % ("Key", "Pre-Order Successor"), end = "")
    print("=====================================")
 
    # This stores the pre-order successor for a given key
    successor = None
 
    # Iterate through all of the elements inserted
    # in BST to get their pre-order successor
    for i in range(n):
 
        # Get the pre-order successor for the given key
        successor = preOrderSuccessor(a[i], ROOT)
 
        if (successor):
             
            # Successor is not None and hence it contains
            # the pre-order successor for given key
            print("%-10d%d" % (a[i], successor.key))
        else:
             
            # Successor is None and hence given key do
            # not have a pre-order successor
            print("%-10dDo Not Exist." % a[i])
 
# This code is contributed by sanjeev2552


C#




// C# program to find pre-Order successor
// of a node in Binary Search Tree
using System;
 
public class GFG {
 
    // Declare a structure
    public class Node
    {
       
        // Key to be stored in BST
        public int key;
 
        // Pointer to left child
        public Node left;
 
        // Pointer to the right child
        public Node right;
 
        // Pointer to parent
        public Node parent;
    };
 
    // This function inserts node in BST
    static Node insert(int key, Node root, Node parent) {
 
        // If root is null, insert key here
        if (root == null) {
            // Allocate memory dynamically
            Node node = new Node();
 
            // Validate malloc call
            if (node != null) {
                // Populate the object pointer to by
                // pointer named node
                node.key = key;
                node.left = node.right = null;
                node.parent = parent;
 
                // Return newly created node
                return node;
 
            } else
 
                // Malloc was not successful to
                // satisfy our request, given
                // an appropriate message to the user
                Console.Write("Could not allocate memory.");
        }
 
        // If this is a duplicate key then
        // give a message to user
        else if (key == root.key)
            Console.Write("Duplicates are not" + " allowed in BST.");
 
        // If the key to be inserted is greater than
        // the root's key then it will go to the
        // right subtree of the tree with current root
        else if (key > root.key)
            root.right = insert(key, root.right, root);
 
        // If the key to be inserted is smaller than the
        // root's key then it will go to a left subtree
        // of the tree with current root
        else
            root.left = insert(key, root.left, root);
 
        // Return the root
        return root;
    }
 
    // This function searched for a given key in BST
    static Node search(int key, Node root) {
        // Since the root is empty and hence
        // key does not exist in BST
        if (root == null)
            return null;
 
        // Current root contains the given key,
        // so return current root
        else if (key == root.key)
            return root;
 
        // Key is greater than the root's key and
        // therefore we will search for this key
        // in the right subtree of tree with root
        // as current root because of all of the keys
        // which are greater than the root's key
        // exist in the right subtree
        else if (key > root.key)
            return search(key, root.right);
 
        // Key is smaller than the root's key and
        // therefore we will search for this key
        // in the left subtree of the tree with root
        // as the current root because of all of the keys
        // which are smaller than the root's key exists in
        // the left subtree search tree in the left subtree
        else
            return search(key, root.left);
    }
 
    // This function returns the node
    // that contains the pre-order successor
    // for the given key
    static Node preOrderSuccessor(int key, Node root) {
 
        // Search for a node in BST
        // that contains the given key
        Node node = search(key, root);
 
        // There is no node in BST
        // that contains the given key,
        // give an appropriate message to user
        if (node == null) {
            Console.Write("{0} do not exists" + " in BST.\n", key);
            return null;
        }
 
        // There exist a node in BST that contains
        // the given key. Apply our observations
        if (node.left != null)
 
            // If left child of the node that
            // contains the given key exist
            // then it is the pre-order successor
            // for the given key
            return node.left;
 
        else if (node.right != null)
 
            // If right but not left child of node
            // that contains the given key exist
            // then it is the pre-order successor
            // for the given key
            return node.right;
 
        else {
            // Node containing the key has neither left
            // nor right child which means that it is
            // leaf node. In this case we will search
            // for its nearest ancestor with right child
            // which has a key greater than the given key
 
            // Since node is a leaf node
            // so its parent is guaranteed to exist
            Node temp = node.parent;
 
            // Search for nearest ancestor with right child
            // that has key greater than the given key
            while (temp != null) {
                if (key < temp.key && temp.right != null)
                    break;
                temp = temp.parent;
            }
 
            // If such an ancestor exist then right child
            // of this ancestor is the pre-order successor
            // for the given otherwise there do not exist
            // any pre-order successor for the given key
            return temp != null ? temp.right : null;
        }
    }
 
    // This function traverse the BST
    // in pre-order fashion
    static void preOrder(Node root) {
        if (root != null) {
            // First visit the root
            Console.Write("{0} ", root.key);
 
            // Next visit its left subtree
            preOrder(root.left);
 
            // Finally visit its right subtree
            preOrder(root.right);
        }
    }
 
    // Driver code
    public static void Main(String []args) {
        // Declares a root for our BST
        Node ROOT = null;
 
        // We will create 15 random integers in
        // range 0-99 to populate our BST
        int []a = { 51, 39, 31, 54, 92, 42, 21, 10, 26, 52, 36, 47, 82, 5, 62 };
 
        int n = a.Length;
 
        // Insert all elements into BST
        for (int i = 0; i < n; i++) {
            // Insert the generated number in BST
            Console.Write("Inserting  {0} .....", a[i]);
 
            ROOT = insert(a[i], ROOT, null);
            Console.Write("Finished Insertion.\n");
        }
 
        // Apply pre-order traversal on BST
        Console.Write("\nPre-Order Traversal : ");
        preOrder(ROOT);
 
        // Display pre-order Successors
        // for all of the keys in BST
        Console.Write("\n=====================================");
        Console.Write("\nKey    Pre-Order Successor\n");
        Console.Write("=====================================\n");
 
        // This stores the pre-order successor
        // for a given key
        Node successor = null;
 
        // Iterate through all of the elements inserted
        // in BST to get their pre-order successor
        for (int i = 0; i < n; ++i) {
            // Get the pre-order successor
            // for the given key
            successor = preOrderSuccessor(a[i], ROOT);
 
            if (successor != null)
 
                // Successor is not null and hence
                // it contains the pre-order
                // successor for given key
                Console.Write("{0}          {1}\n", a[i], successor.key);
            else
                // Successor is null and hence given key do
                // not have a pre-order successor
                Console.Write("{0}         Do Not Exist.\n", a[i]);
        }
    }
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
// Javascript program to find pre-Order successor
// of a node in Binary Search Tree
 
// Declare a structure
class Node
{
    constructor()
    {
        this.key=0;
        this.left=this.right=this.parent=null;
    }
}
 
// This function inserts node in BST
function insert(key,root,parent)
{
    // If root is null, insert key here
    if(root == null)
    {
        // Allocate memory dynamically
        let node = new Node();
  
        // Validate malloc call
        if(node != null)
        {
            // Populate the object pointer to by
            // pointer named node
            node.key = key;
            node.left = node.right = null;
            node.parent = parent;
  
            // Return newly created node
            return node;
              
        }
        else
          
            // Malloc was not successful to
            // satisfy our request, given
            // an appropriate message to the user
            document.write("Could not allocate memory.");
    }
      
    // If this is a duplicate key then
    // give a message to user
    else if(key == root.key)
        document.write("Duplicates are not" +
                            " allowed in BST.");
      
    // If the key to be inserted is greater than
    // the root's key then it will go to the
    // right subtree of the tree with current root
    else if(key > root.key)
        root.right = insert(key, root.right, root);
      
    // If the key to be inserted is smaller than the
    // root's key then it will go to a left subtree
    // of the tree with current root
    else
        root.left = insert(key, root.left, root);
      
    // Return the root
    return root;
}
 
// This function searched for a given key in BST
function search(key,root)
{
    // Since the root is empty and hence
    // key does not exist in BST
    if(root == null)
        return null;
      
    // Current root contains the given key,
    // so return current root
    else if( key == root.key)
        return root;
      
    // Key is greater than the root's key and
    // therefore we will search for this key
    // in the right subtree of tree with root
    // as current root because of all of the keys
    // which are greater than the root's key
    // exist in the right subtree
    else if(key > root.key)
        return search(key, root.right);
      
    // Key is smaller than the root's key and
    // therefore we will search for this key
    // in the left subtree of the tree with root
    // as the current root because of all of the keys
    // which are smaller than the root's key exists in
    // the left subtree search tree in the left subtree
    else
        return search(key, root.left);
}
 
// This function returns the node
// that contains the pre-order successor
// for the given key
function preOrderSuccessor(key,root)
{
    // Search for a node in BST
    // that contains the given key
    let node = search(key, root);
  
    // There is no node in BST
    // that contains the given key,
    // give an appropriate message to user
    if(node == null)
    {
        document.write(key + " do not exists" +
                           " in BST.<br>");
        return null;
    }
  
    // There exist a node in BST that contains
    // the given key. Apply our observations
    if(node.left != null)
      
        // If left child of the node that
        // contains the given key exist
        // then it is the pre-order successor
        // for the given key
        return node.left;
  
    else if(node.right != null)
      
        // If right but not left child of node
        // that contains the given key exist
        // then it is the pre-order successor
        // for the given key
        return node.right;
  
    else
    {
        // Node containing the key has neither left
        // nor right child which means that it is
        // leaf node. In this case we will search
        // for its nearest ancestor with right child
        // which has a key greater than the given key
  
        // Since node is a leaf node
        // so its parent is guaranteed to exist
        let temp = node.parent;
  
        // Search for nearest ancestor with right child
        // that has key greater than the given key
        while(temp != null)
        {
            if(key < temp.key && temp.right != null)
                break;
            temp = temp.parent;
        }
  
        // If such an ancestor exist then right child
        // of this ancestor is the pre-order successor
        // for the given otherwise there do not exist
        // any pre-order successor for the given key
        return temp != null ? temp.right : null;
    }
}
 
// This function traverse the BST
// in pre-order fashion
function preOrder(root)
{
    if(root != null)
    {
        // First visit the root
        document.write(root.key+" ");
          
        // Next visit its left subtree
        preOrder(root.left);
          
        // Finally visit its right subtree
        preOrder(root.right);
    }
}
 
// Driver code
// Declares a root for our BST
    let ROOT = null;
  
    // We will create 15 random integers in
    // range 0-99 to populate our BST
    let a = [51, 39, 31, 54, 92, 42, 21, 10,
                26, 52, 36, 47, 82, 5, 62];
  
    let n = a.length;
      
    // Insert all elements into BST
    for(let i = 0 ; i < n; i++)
    {
        // Insert the generated number in BST
        document.write("Inserting "+a[i]+".....");
          
        ROOT = insert(a[i], ROOT, null);
        document.write("Finished Insertion.<br>");
    }
  
    // Apply pre-order traversal on BST
    document.write("<br>Pre-Order Traversal : ");
    preOrder(ROOT);
  
    // Display pre-order Successors
    // for all of the keys in BST
    document.write("<br>=====================================<br>");
    document.write("Key"+"&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp" + "Pre-Order Successor<br>");
    document.write("=====================================<br>");
  
    // This stores the pre-order successor
    // for a given key
    let successor = null;
  
    // Iterate through all of the elements inserted
    // in BST to get their pre-order successor
    for(let i = 0 ; i < n; ++i)
    {
        // Get the pre-order successor
        // for the given key
        successor = preOrderSuccessor(a[i], ROOT);
  
        if(successor != null)
          
            // Successor is not null and hence
            // it contains the pre-order
            // successor for given key
            document.write(a[i]+"&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp" +successor.key+"<br>");
        else
            // Successor is null and hence given key do
            // not have a pre-order successor
            document.write(a[i]+ "&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp Do Not Exist.<br>");
    }
 
 
// This code is contributed by avanitrachhadiya2155
</script>


Output: 

Inserting 51.....Finished Insertion.
Inserting 39.....Finished Insertion.
Inserting 31.....Finished Insertion.
Inserting 54.....Finished Insertion.
Inserting 92.....Finished Insertion.
Inserting 42.....Finished Insertion.
Inserting 21.....Finished Insertion.
Inserting 10.....Finished Insertion.
Inserting 26.....Finished Insertion.
Inserting 52.....Finished Insertion.
Inserting 36.....Finished Insertion.
Inserting 47.....Finished Insertion.
Inserting 82.....Finished Insertion.
Inserting  5.....Finished Insertion.
Inserting 62.....Finished Insertion.

Pre-Order Traversal : 51 39 31 21 10 5 26 36 42 47 54 52 92 82 62 
=====================================
Key       Pre-Order Successor
=====================================
51        39
39        31
31        21
54        52
92        82
42        47
21        10
10        5
26        36
52        92
36        42
47        54
82        62
5         26
62        Do Not Exist.

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments