Given ‘N’ number of sticks of length a1, a2, a3…an. The task is to count the number of squares and rectangles possible.
Note: One stick should be used only once i.e. either in any of the squares or rectangles.
Examples:
Input: arr[] = {1, 2, 1, 2} Output: 1 Rectangle with sides 1 1 2 2 Input: arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9} Output: 0 No square or rectangle is possible
Approach: Below is the step by step algorithm to solve this problem :
- Initialize the number of sticks.
- Initialize all the sticks with it’s lengths in an array.
- Sort the array in an increasing order.
- Calculate the number of pairs of sticks with the same length.
- Divide the total number of pairs by 2, which will be the total possible rectangle and square.
Below is the implementation of above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Function to find the possible // rectangles and squares int rectangleSquare( int arr[], int n) { // sort all the sticks sort(arr, arr + n); int count = 0; // calculate all the pair of // sticks with same length for ( int i = 0; i < n - 1; i++) { if (arr[i] == arr[i + 1]) { count++; i++; } } // divide the total number of pair // which will be the number of possible // rectangle and square return count / 2; } // Driver code int main() { // initialize all the stick lengths int arr[] = { 2, 2, 4, 4, 4, 4, 6, 6, 6, 7, 7, 9, 9 }; int n = sizeof (arr) / sizeof (arr[0]); cout << rectangleSquare(arr, n); return 0; } |
Java
// Java implementation of above approach import java.util.Arrays; class GFG { // Function to find the possible // rectangles and squares static int rectangleSquare( int arr[], int n) { // sort all the sticks Arrays.sort(arr); int count = 0 ; // calculate all the pair of // sticks with same length for ( int i = 0 ; i < n - 1 ; i++) { if (arr[i] == arr[i + 1 ]) { count++; i++; } } // divide the total number of pair // which will be the number of possible // rectangle and square return count / 2 ; } // Driver code public static void main(String[] args) { // initialize all the stick lengths int arr[] = { 2 , 2 , 4 , 4 , 4 , 4 , 6 , 6 , 6 , 7 , 7 , 9 , 9 }; int n = arr.length; System.out.println(rectangleSquare(arr, n)); } } // This code is contributed // by PrinciRaj1992 |
Python3
# Python3 implementation of above approach # Function to find the possible # rectangles and squares def rectangleSquare( arr, n): # sort all the sticks arr.sort() count = 0 #print(" xx",arr[6]) # calculate all the pair of # sticks with same length k = 0 for i in range (n - 1 ): if (k = = 1 ): k = 0 continue if (arr[i] = = arr[i + 1 ]): count = count + 1 k = 1 # divide the total number of pair # which will be the number of possible # rectangle and square return count / 2 # Driver code if __name__ = = '__main__' : # initialize all the stick lengths arr = [ 2 , 2 , 4 , 4 , 4 , 4 , 6 , 6 , 6 , 7 , 7 , 9 , 9 ] n = len (arr) print (rectangleSquare(arr, n)) # this code is written by ash264 |
C#
// C# implementation of above approach using System; class GFG { // Function to find the possible // rectangles and squares static int rectangleSquare( int []arr, int n) { // sort all the sticks Array.Sort(arr); int count = 0; // calculate all the pair of // sticks with same length for ( int i = 0; i < n - 1; i++) { if (arr[i] == arr[i + 1]) { count++; i++; } } // divide the total number of pair // which will be the number of possible // rectangle and square return count / 2; } // Driver code public static void Main(String[] args) { // initialize all the stick lengths int []arr = {2, 2, 4, 4, 4, 4, 6, 6, 6, 7, 7, 9, 9}; int n = arr.Length; Console.WriteLine(rectangleSquare(arr, n)); } } // This code has been contributed // by Rajput-Ji |
PHP
<?php // PHP implementation of above approach // Function to find the possible // rectangles and squares function rectangleSquare( $arr , $n ) { // sort all the sticks sort( $arr ); $count = 0; // calculate all the pair of // sticks with same length for ( $i = 0; $i < $n - 1; $i ++) { if ( $arr [ $i ] == $arr [ $i + 1]) { $count ++; $i ++; } } // divide the total number of pair // which will be the number of possible // rectangle and square return ( $count / 2); } // Driver code // initialize all the stick lengths $arr = array (2, 2, 4, 4, 4, 4, 6, 6, 6, 7, 7, 9, 9 ); $n = sizeof( $arr ); echo rectangleSquare( $arr , $n ); // This code is contributed by Sachin. ?> |
Javascript
<script> // javascript implementation of above approach // Function to find the possible // rectangles and squares function rectangleSquare(arr , n) { // sort all the sticks arr.sort(); var count = 0; // calculate all the pair of // sticks with same length for (i = 0; i < n - 1; i++) { if (arr[i] == arr[i + 1]) { count++; i++; } } // divide the total number of pair // which will be the number of possible // rectangle and square return count / 2; } // Driver code // initialize all the stick lengths var arr = [2, 2, 4, 4, 4, 4, 6, 6, 6, 7, 7, 9, 9]; var n = arr.length; document.write(rectangleSquare(arr, n)); // This code is contributed by 29AjayKumar </script> |
3
Complexity Analysis:
- Time Complexity: O(n*log n) where n is the size of the array.
- Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!