Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPosition of Elements which are equal to sum of all Preceding elements

Position of Elements which are equal to sum of all Preceding elements

Given an array Arr[] of N of positive integers. The task is to find positions of all the elements which are equal to the sum of all preceding elements. If no such element exists print -1.
Examples: 
 

Input : Arr[] = {1, 2, 3, 6, 3, 15, 5} 
Output :3 4 6
Here, the element at index “3” i.e. 3 is equal to the sum of preceding elements (1 + 2). 
Similarly, at index 4, 6 = 1+2+3 (sum of all preceding elements). 
And element at index 6 i.e. 15 = 1 + 2 + 3 + 6 + 3.
Input: Arr[] = {7, 5, 17, 25} 
Output: -1 
 

 

Approach: 
While traversing the array Arr[], maintain a sum variable that store the sum of elements till i – 1. Compare the sum with current element Arr[i]. If it is equal, push the index of this element into the answer vector.
Below is the implementation of the above approach: 
 

C++




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// function to return valid indexes
vector<int> find_idx(int ar[], int n)
{
 
    // Vector to store the answer
    vector<int> answer;
 
    // Initial sum would always
    // be first element
    int sum = ar[0];
 
    for (int i = 1; i < n; i++) {
 
        // Check if sum till now
        // is equal to current element
        if (sum == ar[i]) {
            answer.push_back(i + 1);
        }
 
        // Updating the sum by
        // adding the current
        // element in each
        // iteration.
        sum += ar[i];
    }
 
    return answer;
}
 
// Driver code
int main()
{
    int ar[] = { 1, 2, 3, 6, 3, 15, 5 };
    int n = sizeof(ar) / sizeof(int);
 
    vector<int> ans = find_idx(ar, n);
 
    if (ans.size() != 0) {
        for (int i : ans) {
            cout << i << " ";
        }
    }
    else {
        cout << "-1";
    }
 
    cout << endl;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
// function to return valid indexes
static Vector<Integer> find_idx(int ar[], int n)
{
 
    // Vector to store the answer
    Vector<Integer> answer = new Vector<Integer>();
 
    // Initial sum would always
    // be first element
    int sum = ar[0];
 
    for (int i = 1; i < n; i++)
    {
 
        // Check if sum till now
        // is equal to current element
        if (sum == ar[i])
        {
            answer.add(i + 1);
        }
 
        // Updating the sum by adding the
        // current element in each iteration.
        sum += ar[i];
    }
    return answer;
}
 
// Driver code
public static void main(String[] args)
{
    int ar[] = { 1, 2, 3, 6, 3, 15, 5 };
    int n = ar.length;
 
    Vector<Integer> ans = find_idx(ar, n);
 
    if (ans.size() != 0)
    {
        for (int i : ans)
        {
            System.out.print(i + " ");
        }
    }
    else
    {
        System.out.println("-1");
    }
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the above approach
 
# function to return valid indexes
def find_idx(ar, n) :
 
    # Vector to store the answer
    answer = [];
 
    # Initial sum would always
    # be first element
    sum = ar[0];
 
    for i in range(1, n) :
 
        # Check if sum till now
        # is equal to current element
        if (sum == ar[i]) :
            answer.append(i + 1);
 
        # Updating the sum by
        # adding the current
        # element in each
        # iteration.
        sum += ar[i];
 
    return answer;
 
# Driver code
if __name__ == "__main__" :
 
    ar = [ 1, 2, 3, 6, 3, 15, 5 ];
    n = len(ar);
 
    ans = find_idx(ar, n);
 
    if (len(ans) != 0) :
         
        for i in ans :
            print(i, end = " ");
             
    else :
         
        print("-1");
 
    print();
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
     
class GFG
{
     
// function to return valid indexes
static List<int> find_idx(int []ar, int n)
{
 
    // Vector to store the answer
    List<int> answer = new List<int>();
 
    // Initial sum would always
    // be first element
    int sum = ar[0];
 
    for (int i = 1; i < n; i++)
    {
 
        // Check if sum till now
        // is equal to current element
        if (sum == ar[i])
        {
            answer.Add(i + 1);
        }
 
        // Updating the sum by adding the
        // current element in each iteration.
        sum += ar[i];
    }
    return answer;
}
 
// Driver code
public static void Main(String[] args)
{
    int []ar = { 1, 2, 3, 6, 3, 15, 5 };
    int n = ar.Length;
 
    List<int> ans = find_idx(ar, n);
 
    if (ans.Count != 0)
    {
        foreach (int i in ans)
        {
            Console.Write(i + " ");
        }
    }
    else
    {
        Console.WriteLine("-1");
    }
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// Javascript implementation
 
// function to return valid indexes
function find_idx(ar, n) {
 
    // Vector to store the answer
    let answer = [];
 
    // Initial sum would always
    // be first element
    let sum = ar[0];
 
    for (let i = 1; i < n; i++) {
 
        // Check if sum till now
        // is equal to current element
        if (sum == ar[i]) {
            answer.push(i + 1);
        }
 
        // Updating the sum by
        // adding the current
        // element in each
        // iteration.
        sum += ar[i];
    }
 
    return answer;
}
 
// Driver code
 
let ar = [1, 2, 3, 6, 3, 15, 5];
let n = ar.length;
 
let ans = find_idx(ar, n);
 
if (ans.length != 0) {
    for (let i of ans) {
        document.write(i + " ");
    }
}
else {
    document.write("-1");
}
 
document.write("<br>");
 
 
// This code is contributed by gfgking.
</script>


Output: 

3 4 6

 

Time Complexity: O(n)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments