Prerequisites: Matplotlib
A trend Graph is a graph that is used to show the trends data over a period of time. It describes a functional representation of two variables (x , y). In which the x is the time-dependent variable whereas y is the collected data. The graph can be in shown any form that can be via line chart, Histograms, scatter plot, bar chart, and pie-chart. In python, we can plot these trend graphs by using matplotlib.pyplot library. It is used for plotting a figure for the given data.
The task is simple and straightforward, for plotting any graph we must suffice the basic data requirement after this determine the values of x over the period of time and data collected for y. Plot the graphs for the above-given data.
Given below are various implementations to depict the same:
Example 1:
Python3
# import all the libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt # create a dataframe Sports = { "medals" : [ 100 , 98 , 102 , 56 , 78 , 56 , 78 , 96 ], "Time_Period" : [ 2010 , 2011 , 2012 , 2013 , 2014 , 2015 , 2016 , 2017 ] } df = pd.DataFrame(Sports) print (df) # to plot the graph df.plot(x = "Time_Period" , y = "medals" , kind = "line" ) plt.show() |
Output:
medals Time_Period 0 100 2010 1 98 2011 2 102 2012 3 56 2013 4 78 2014 5 56 2015 6 78 2016 7 96 2017
Example 2: Using the above data we would plot the scatter and bar graph.
Python3
# import all the libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt # create a dataframe Sports = { "medals" : [ 100 , 98 , 102 , 56 , 78 , 56 , 78 , 96 ], "Time_Period" : [ 2010 , 2011 , 2012 , 2013 , 2014 , 2015 , 2016 , 2017 ] } df = pd.DataFrame(Sports) print (df) # to plot the graph # subplot (rowno,columno,position) is used # to plot in a single frame. # to plot the scatter graph ,write kind= scatter df.plot(x = "Time_Period" , y = "medals" , kind = "scatter" ) plt.title( "scatter chart" ) plt.subplot( 1 , 1 , 1 ) # to Plot the graph in Bar chart df.plot(x = "Time_Period" , y = "medals" , kind = "bar" ) plt.title( "bar" ) plt.subplot( 1 , 1 , 2 ) plt.show() |
Output:
Example 3: student getting marks in 2010.
Python3
# import the library import matplotlib.pyplot as plt # Creation of Data x1 = [ 'math' , 'english' , 'science' , 'Hindi' , 'social studies' ] y1 = [ 92 , 54 , 63 , 75 , 53 ] y2 = [ 86 , 44 , 65 , 98 , 85 ] # Plotting the Data plt.plot(x1, y1, label = 'Semester1' ) plt.plot(x1, y2, label = 'semester2' ) plt.xlabel( 'subjects' ) plt.ylabel( 'marks' ) plt.title( "marks obtained in 2010" ) plt.plot(y1, 'o:g' , linestyle = '--' , linewidth = '8' ) plt.plot(y2, 'o:g' , linestyle = ':' , linewidth = '8' ) plt.legend() |
Output: