Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIPick points from array such that minimum distance is maximized

Pick points from array such that minimum distance is maximized

Given C magnets and an array arr[] representing N index positions where C ? N. The task is to place these magnets at these available indices in such a way that the distance between the two nearest magnets is as large as possible.
Examples: 
 

Input: C = 4, arr[] = {1, 2, 5, 8, 10, 18} 
Output:
We can place 4 magnets to positions 1, 5, 10, 18 so maximum distance is minimum of ( dist(1, 5), dist(5, 10), dist(10, 18) ) = dist(1, 5) = 4. 
And it will be the maximum possible distance between two nearest magnets.
Input: C = 3, arr[] = {5, 7, 11, 20, 23} 
Output:
We can place 3 magnets to positions 5, 11, 23 so answer will be minimum of ( dist(5, 11), dist(11, 23) ) = dist(5, 11) = 6. 
 

 

Naive approach: Find all possible positions of magnets that is C(n, c) possible ways and find one that maximizes the distance between two magnets, where C(n, c) is selecting c objects from n given objects.
Efficient approach: Let mx be the maximum possible distance, therefore all x greater than 0 and less than mx will also allow placing magnets but for all y greater than mx, it will not be possible to place the magnets. Therefore we can use binary search to find the maximum possible distance. 
Since our answer will always lie between 0 and the maximum index among the given N indices. Therefore apply binary search and find the middle value between the lowest and highest values say ‘mid’, make a function that will check if it is possible to place C magnets assuming ‘mid’ as the maximum possible distance. 
Overall time complexity will be O(nlog(n)) since binary search will take O(log(n)) and O(n) for checking that if it is possible to place all C magnets. 
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if it is possible
// to place C magnets assuming mid as
// maximum possible distance
bool isPossible(int arr[], int n, int C, int mid)
{
    // Variable magnet will store count of magnets
    // that got placed and currPosition will store
    // the position of last placed magnet
    int magnet = 1, currPosition = arr[0];
 
    for (int i = 1; i < n; i++) {
 
        // If difference between current index and
        // last placed index is greater than or equal to mid
        // it will allow placing magnet to this index
        if (arr[i] - currPosition >= mid) {
 
            magnet++;
 
            // Now this index will become
            // last placed index
            currPosition = arr[i];
 
            // If count of magnets placed becomes C
            if (magnet == C)
                return true;
        }
    }
 
    // If count of placed magnet is
    // less than C then return false
    return false;
}
 
// Function for modified binary search
int binarySearch(int n, int C, int arr[])
{
    int lo, hi, mid, ans;
 
    // Sort the indices in ascending order
    sort(arr, arr + n);
 
    // Minimum possible distance
    lo = 0;
 
    // Maximum possible distance
    hi = arr[n - 1];
 
    ans = 0;
 
    // Run the loop until lo becomes
    // greater than hi
    while (lo <= hi) {
 
        mid = (lo + hi) / 2;
 
        // If not possible, decrease value of hi
        if (!isPossible(arr, n, C, mid))
            hi = mid - 1;
        else {
 
            // Update the answer
            ans = max(ans, mid);
            lo = mid + 1;
        }
    }
 
    // Return maximum possible distance
    return ans;
}
 
// Driver code
int main()
{
    int C = 4;
    int arr[] = { 1, 2, 5, 8, 10, 18 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << binarySearch(n, C, arr) << endl;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to check if it is possible
// to place C magnets assuming mid as
// maximum possible distance
static boolean isPossible(int []arr, int n,
                        int C, int mid)
{
    // Variable magnet will store count of magnets
    // that got placed and currPosition will store
    // the position of last placed magnet
    int magnet = 1, currPosition = arr[0];
 
    for (int i = 1; i < n; i++)
    {
 
        // If difference between current index and
        // last placed index is greater than or equal to mid
        // it will allow placing magnet to this index
        if (arr[i] - currPosition >= mid)
        {
 
            magnet++;
 
            // Now this index will become
            // last placed index
            currPosition = arr[i];
 
            // If count of magnets placed becomes C
            if (magnet == C)
                return true;
        }
    }
 
    // If count of placed magnet is
    // less than C then return false
    return false;
}
 
// Function for modified binary search
static int binarySearch(int n, int C, int []arr)
{
    int lo, hi, mid, ans;
 
    // Sort the indices in ascending order
    Arrays.sort(arr);
 
    // Minimum possible distance
    lo = 0;
 
    // Maximum possible distance
    hi = arr[n - 1];
 
    ans = 0;
 
    // Run the loop until lo becomes
    // greater than hi
    while (lo <= hi)
    {
 
        mid = (lo + hi) / 2;
 
        // If not possible, decrease value of hi
        if (!isPossible(arr, n, C, mid))
            hi = mid - 1;
        else
        {
 
            // Update the answer
            ans = Math.max(ans, mid);
            lo = mid + 1;
        }
    }
 
    // Return maximum possible distance
    return ans;
}
 
// Driver code
public static void main(String args[])
{
    int C = 4;
    int []arr = { 1, 2, 5, 8, 10, 18 };
    int n = arr.length;
    System.out.println(binarySearch(n, C, arr));
}
}
 
// This code is contributed by Akanksha Rai


Python3




# Python 3 implementation of the approach
 
# Function to check if it is possible
# to place C magnets assuming mid as
# maximum possible distance
def isPossible(arr, n, C, mid):
     
    # Variable magnet will store count of
    # magnets that got placed and
    # currPosition will store the position
    # of last placed magnet
    magnet = 1
    currPosition = arr[0]
 
    for i in range(1, n):
         
        # If difference between current index
        # and last placed index is greater than
        # or equal to mid it will allow placing
        # magnet to this index
        if (arr[i] - currPosition >= mid):
            magnet += 1
 
            # Now this index will become
            # last placed index
            currPosition = arr[i]
 
            # If count of magnets placed becomes C
            if (magnet == C):
                return True
 
    # If count of placed magnet is
    # less than C then return false
    return False
 
# Function for modified binary search
def binarySearch(n, C, arr):
     
    # Sort the indices in ascending order
    arr.sort(reverse = False)
 
    # Minimum possible distance
    lo = 0
 
    # Maximum possible distance
    hi = arr[n - 1]
    ans = 0
 
    # Run the loop until lo becomes
    # greater than hi
    while (lo <= hi):
        mid = int((lo + hi) / 2)
 
        # If not possible, decrease value of hi
        if (isPossible(arr, n, C, mid) == False):
            hi = mid - 1
        else:
             
            # Update the answer
            ans = max(ans, mid)
            lo = mid + 1
 
    # Return maximum possible distance
    return ans
 
# Driver code
if __name__ == '__main__':
    C = 4
    arr = [1, 2, 5, 8, 10, 18]
    n = len(arr)
    print(binarySearch(n, C, arr))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
 
class GFG
{
// Function to check if it is possible
// to place C magnets assuming mid as
// maximum possible distance
static bool isPossible(int []arr, int n,
                        int C, int mid)
{
    // Variable magnet will store count of magnets
    // that got placed and currPosition will store
    // the position of last placed magnet
    int magnet = 1, currPosition = arr[0];
 
    for (int i = 1; i < n; i++)
    {
 
        // If difference between current index and
        // last placed index is greater than or equal to mid
        // it will allow placing magnet to this index
        if (arr[i] - currPosition >= mid)
        {
 
            magnet++;
 
            // Now this index will become
            // last placed index
            currPosition = arr[i];
 
            // If count of magnets placed becomes C
            if (magnet == C)
                return true;
        }
    }
 
    // If count of placed magnet is
    // less than C then return false
    return false;
}
 
// Function for modified binary search
static int binarySearch(int n, int C, int []arr)
{
    int lo, hi, mid, ans;
 
    // Sort the indices in ascending order
    Array.Sort(arr);
 
    // Minimum possible distance
    lo = 0;
 
    // Maximum possible distance
    hi = arr[n - 1];
 
    ans = 0;
 
    // Run the loop until lo becomes
    // greater than hi
    while (lo <= hi)
    {
 
        mid = (lo + hi) / 2;
 
        // If not possible, decrease value of hi
        if (!isPossible(arr, n, C, mid))
            hi = mid - 1;
        else
        {
 
            // Update the answer
            ans = Math.Max(ans, mid);
            lo = mid + 1;
        }
    }
 
    // Return maximum possible distance
    return ans;
}
 
// Driver code
static void Main()
{
    int C = 4;
    int []arr = { 1, 2, 5, 8, 10, 18 };
    int n = arr.Length;
    Console.WriteLine(binarySearch(n, C, arr));
}
}
 
// This code is contributed by chandan_jnu


PHP




<?php
// PHP implementation of the approach
 
// Function to check if it is possible
// to place C magnets assuming mid as
// maximum possible distance
function isPossible($arr, $n, $C, $mid)
{
    // Variable magnet will store count of magnets
    // that got placed and currPosition will store
    // the position of last placed magnet
    $magnet = 1; $currPosition = $arr[0];
 
    for ($i = 1; $i < $n; $i++)
    {
 
        // If difference between current index and
        // last placed index is greater than or equal to mid
        // it will allow placing magnet to this index
        if ($arr[$i] - $currPosition >= $mid)
        {
            $magnet++;
 
            // Now this index will become
            // last placed index
            $currPosition = $arr[$i];
 
            // If count of magnets placed becomes C
            if ($magnet == $C)
                return true;
        }
    }
 
    // If count of placed magnet is
    // less than C then return false
    return false;
}
 
// Function for modified binary search
function binarySearch($n, $C, $arr)
{
 
    // Sort the indices in ascending order
    sort($arr, 0);
 
    // Minimum possible distance
    $lo = 0;
 
    // Maximum possible distance
    $hi = $arr[$n - 1];
 
    $ans = 0;
 
    // Run the loop until lo becomes
    // greater than hi
    while ($lo <= $hi)
    {
        $mid = ($lo + $hi) / 2;
 
        // If not possible, decrease value of hi
        if (!isPossible($arr, $n, $C, $mid))
            $hi = $mid - 1;
        else
        {
 
            // Update the answer
            $ans = max($ans, $mid);
            $lo = $mid + 1;
        }
    }
 
    // Return maximum possible distance
    return $ans;
}
 
// Driver code
$C = 4;
$arr = array(1, 2, 5, 8, 10, 18);
$n = sizeof($arr);
echo binarySearch($n, $C, $arr) . "\n";
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
// Javascript implementation of the approach
 
// Function to check if it is possible
// to place C magnets assuming mid as
// maximum possible distance
function isPossible(arr, n, C, mid)
{
    // Variable magnet will store count of magnets
    // that got placed and currPosition will store
    // the position of last placed magnet
    let magnet = 1; currPosition = arr[0];
 
    for (let i = 1; i < n; i++)
    {
 
        // If difference between current index and
        // last placed index is greater than or equal to mid
        // it will allow placing magnet to this index
        if (arr[i] - currPosition >= mid)
        {
            magnet++;
 
            // Now this index will become
            // last placed index
            currPosition = arr[i];
 
            // If count of magnets placed becomes C
            if (magnet == C)
                return true;
        }
    }
 
    // If count of placed magnet is
    // less than C then return false
    return false;
}
 
// Function for modified binary search
function binarySearch(n, C, arr)
{
 
    // Sort the indices in ascending order
    arr.sort((a, b) => a - b);
 
    // Minimum possible distance
    let lo = 0;
 
    // Maximum possible distance
    let hi = arr[n - 1];
 
    let ans = 0;
 
    // Run the loop until lo becomes
    // greater than hi
    while (lo <= hi)
    {
        mid = Math.floor((lo + hi) / 2);
 
        // If not possible, decrease value of hi
        if (!isPossible(arr, n, C, mid))
            hi = mid - 1;
        else
        {
 
            // Update the answer
            ans = Math.max(ans, mid);
            lo = mid + 1;
        }
    }
 
    // Return maximum possible distance
    return ans;
}
 
// Driver code
let C = 4;
let arr = new Array(1, 2, 5, 8, 10, 18);
let n = arr.length;
 
document.write(binarySearch(n, C, arr) + "<br>");
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

4

 

Time Complexity: O(n * log(n))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments