Given a number N, the task is to find the next perfect cube greater than N.
Examples:
Input: N = 6 Output: 8 8 is a greater number than 6 and is also a perfect cube Input: N = 9 Output: 27
Approach:
- Find the cube root of given N.
- Calculate its floor value using floor function in C++.
- Then add 1 to it.
- Print cube of that number.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach#include <cmath>#include <iostream>using namespace std;// Function to find the next perfect cubeint nextPerfectCube(int N){ int nextN = floor(cbrt(N)) + 1; return nextN * nextN * nextN;}// Driver Codeint main(){ int n = 35; cout << nextPerfectCube(n); return 0;} |
Java
//Java implementation of above approachimport java.util.*;import java.lang.*;import java.io.*;class GFG{ // Function to find the next perfect cubestatic int nextPerfectCube(int N){ int nextN = (int)Math.floor(Math.cbrt(N)) + 1; return nextN * nextN * nextN;} // Driver Codepublic static void main(String args[]){ int n = 35; System.out.print(nextPerfectCube(n));}} |
Python 3
# Python 3 implementation of above approach # from math import everythingfrom math import *# Function to find the next perfect cube def nextPerfectCube(N) : nextN = floor(N ** (1/3)) + 1 return nextN ** 3# Driver code if __name__ == "__main__" : n = 35 print(nextPerfectCube(n))# This code is contributed by ANKITRAI1 |
C#
// C# implementation of above approachusing System; class GFG{ // Function to find the next perfect cubestatic int nextPerfectCube(int N){ int nextN = (int)Math.Floor(Math.Pow(N, (double)1/3)) + 1; return nextN * nextN * nextN;}// Driver Codepublic static void Main(){ int n = 35; Console.Write(nextPerfectCube(n));}}// This code is contributed by ChitraNayal |
PHP
<?php// PHP implementation of above approach // from math import everything// Function to find the next perfect cube function nextPerfectCube($N){ $nextN = (int)(floor(pow($N,(1/3))) + 1); return $nextN * $nextN * $nextN ;}// Driver code $n = 35; print(nextPerfectCube($n));// This code is contributed by mits?> |
Javascript
<script>// Javascript implementation of above approach// Function to find the next perfect cubefunction nextPerfectCube(N){ let nextN = Math.floor(Math.cbrt(N)) + 1; return nextN * nextN * nextN;}// Driver Codelet n = 35;document.write(nextPerfectCube(n));</script> |
64
Time Complexity: O(logN) because it using cbrt function
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
