Monday, November 18, 2024
Google search engine
HomeData Modelling & AIPerfect cube greater than a given number

Perfect cube greater than a given number

Given a number N, the task is to find the next perfect cube greater than N.
Examples: 

Input: N = 6
Output: 8
8 is a greater number than 6 and
is also a perfect cube

Input: N = 9
Output: 27

Approach: 

  1. Find the cube root of given N.
  2. Calculate its floor value using floor function in C++.
  3. Then add 1 to it.
  4. Print cube of that number.

Below is the implementation of the above approach:

C++




// C++ implementation of above approach
#include <cmath>
#include <iostream>
using namespace std;
 
// Function to find the next perfect cube
int nextPerfectCube(int N)
{
    int nextN = floor(cbrt(N)) + 1;
 
    return nextN * nextN * nextN;
}
 
// Driver Code
int main()
{
    int n = 35;
 
    cout << nextPerfectCube(n);
    return 0;
}


Java




//Java implementation of above approach
import java.util.*;
import java.lang.*;
import java.io.*;
 
 
 
class GFG{
// Function to find the next perfect cube
static int nextPerfectCube(int N)
{
    int nextN = (int)Math.floor(Math.cbrt(N)) + 1;
  
    return nextN * nextN * nextN;
}
  
// Driver Code
public static void main(String args[])
{
    int n = 35;
  
    System.out.print(nextPerfectCube(n));
}
}


Python 3




# Python 3 implementation of above approach
 
# from math import everything
from math import *
 
# Function to find the next perfect cube
def nextPerfectCube(N) :
 
    nextN = floor(N ** (1/3)) + 1
 
    return nextN ** 3
 
 
# Driver code    
if __name__ == "__main__" :
 
    n = 35
    print(nextPerfectCube(n))
 
# This code is contributed by ANKITRAI1


C#




// C# implementation of above approach
using System;
class GFG
{
// Function to find the next perfect cube
static int nextPerfectCube(int N)
{
    int nextN = (int)Math.Floor(Math.Pow(N,
                         (double)1/3)) + 1;
 
    return nextN * nextN * nextN;
}
 
// Driver Code
public static void Main()
{
    int n = 35;
 
    Console.Write(nextPerfectCube(n));
}
}
 
// This code is contributed by ChitraNayal


PHP




<?php
// PHP implementation of above approach
 
// from math import everything
 
// Function to find the next perfect cube
function nextPerfectCube($N)
{
    $nextN = (int)(floor(pow($N,(1/3))) + 1);
 
    return $nextN * $nextN * $nextN ;
}
 
// Driver code    
 
    $n = 35;
    print(nextPerfectCube($n));
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript implementation of above approach
 
// Function to find the next perfect cube
function nextPerfectCube(N)
{
    let nextN = Math.floor(Math.cbrt(N)) + 1;
 
    return nextN * nextN * nextN;
}
 
// Driver Code
let n = 35;
 
document.write(nextPerfectCube(n));
 
</script>


Output: 

64

 

Time Complexity: O(logN) because it using cbrt function
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments