Given a number N, the task is to find the next perfect cube greater than N.
Examples:
Input: N = 6 Output: 8 8 is a greater number than 6 and is also a perfect cube Input: N = 9 Output: 27
Approach:
- Find the cube root of given N.
- Calculate its floor value using floor function in C++.
- Then add 1 to it.
- Print cube of that number.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <cmath> #include <iostream> using namespace std; // Function to find the next perfect cube int nextPerfectCube( int N) { int nextN = floor (cbrt(N)) + 1; return nextN * nextN * nextN; } // Driver Code int main() { int n = 35; cout << nextPerfectCube(n); return 0; } |
Java
//Java implementation of above approach import java.util.*; import java.lang.*; import java.io.*; class GFG{ // Function to find the next perfect cube static int nextPerfectCube( int N) { int nextN = ( int )Math.floor(Math.cbrt(N)) + 1 ; return nextN * nextN * nextN; } // Driver Code public static void main(String args[]) { int n = 35 ; System.out.print(nextPerfectCube(n)); } } |
Python 3
# Python 3 implementation of above approach # from math import everything from math import * # Function to find the next perfect cube def nextPerfectCube(N) : nextN = floor(N * * ( 1 / 3 )) + 1 return nextN * * 3 # Driver code if __name__ = = "__main__" : n = 35 print (nextPerfectCube(n)) # This code is contributed by ANKITRAI1 |
C#
// C# implementation of above approach using System; class GFG { // Function to find the next perfect cube static int nextPerfectCube( int N) { int nextN = ( int )Math.Floor(Math.Pow(N, ( double )1/3)) + 1; return nextN * nextN * nextN; } // Driver Code public static void Main() { int n = 35; Console.Write(nextPerfectCube(n)); } } // This code is contributed by ChitraNayal |
PHP
<?php // PHP implementation of above approach // from math import everything // Function to find the next perfect cube function nextPerfectCube( $N ) { $nextN = (int)( floor (pow( $N ,(1/3))) + 1); return $nextN * $nextN * $nextN ; } // Driver code $n = 35; print (nextPerfectCube( $n )); // This code is contributed by mits ?> |
Javascript
<script> // Javascript implementation of above approach // Function to find the next perfect cube function nextPerfectCube(N) { let nextN = Math.floor(Math.cbrt(N)) + 1; return nextN * nextN * nextN; } // Driver Code let n = 35; document.write(nextPerfectCube(n)); </script> |
64
Time Complexity: O(logN) because it using cbrt function
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!