Given a directed graph with N nodes and E edges, a source S and a destination D nodes. The task is to find the path with the minimum XOR sum of edges from S to D. If there is no path from S to D then print -1.
Examples:
Input: N = 3, E = 3, Edges = {{{1, 2}, 5}, {{1, 3}, 9}, {{2, 3}, 1}}, S = 1, and D = 3
Output: 4
The path with smallest XOR of edges weight will be 1->2->3
with XOR sum as 5^1 = 4.Input: N = 3, E = 3, Edges = {{{3, 2}, 5}, {{3, 3}, 9}, {{3, 3}, 1}}, S = 1, and D = 3
Output: -1
Approach: The idea is to use Dijkstra’s shortest path algorithm with a slight variation. Below is the step-wise approach for the problem:
- Base Case: If the source node is equal to the destination then return 0.
- Initialise a priority-queue with source node and its weight as 0 and a visited array.
- While priority queue is not empty:
- Pop the top-most element from priority queue. Let’s call it as current node.
- Check if the current node is already visited with the help of the visited array, If yes then continue.
- If the current node is the destination node then return the XOR sum distance of the current node from the source node.
- Iterate all the nodes adjacent to current node and push into priority queue and their distance as XOR sum with the current distance and edge weight.
- Otherwise, there is no path from source to destination. Therefore, return -1
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the smallest // xor sum of edges double minXorSumOfEdges( int s, int d, vector<vector<pair< int , int > > > gr) { // If the source is equal // to the destination if (s == d) return 0; // Initialise the priority queue set<pair< int , int > > pq; pq.insert({ 0, s }); // Visited array bool v[gr.size()] = { 0 }; // While the priority-queue // is not empty while (pq.size()) { // Current node int curr = pq.begin()->second; // Current xor sum of distance int dist = pq.begin()->first; // Popping the top-most element pq.erase(pq.begin()); // If already visited continue if (v[curr]) continue ; // Marking the node as visited v[curr] = 1; // If it is a destination node if (curr == d) return dist; // Traversing the current node for ( auto it : gr[curr]) pq.insert({ dist ^ it.second, it.first }); } // If no path exists return -1; } // Driver code int main() { int n = 3; // Graph as adjacency matrix vector<vector<pair< int , int > > > gr(n + 1); // Input edges gr[1].push_back({ 3, 9 }); gr[2].push_back({ 3, 1 }); gr[1].push_back({ 2, 5 }); // Source and destination int s = 1, d = 3; cout << minXorSumOfEdges(s, d, gr); return 0; } |
Java
// Java implementation of the approach import java.util.PriorityQueue; import java.util.ArrayList; class Pair implements Comparable<Pair> { int first, second; public Pair( int first, int second) { this .first = first; this .second = second; } @Override public int compareTo(Pair p) { if ( this .first == p.first) { return this .second - p.second; } return this .first - p.first; } } class GFG{ // Function to return the smallest // xor sum of edges static int minXorSumOfEdges( int s, int d, ArrayList<ArrayList<Pair>> gr) { // If the source is equal // to the destination if (s == d) return 0 ; // Initialise the priority queue PriorityQueue<Pair> pq = new PriorityQueue<>(); pq.add( new Pair( 0 , s)); // Visited array boolean [] v = new boolean [gr.size()]; // While the priority-queue // is not empty while (!pq.isEmpty()) { // Iterator<Pair> itr = pq.iterator(); // Current node Pair p = pq.poll(); int curr = p.second; // Current xor sum of distance int dist = p.first; // If already visited continue if (v[curr]) continue ; // Marking the node as visited v[curr] = true ; // If it is a destination node if (curr == d) return dist; // Traversing the current node for (Pair it : gr.get(curr)) pq.add( new Pair(dist ^ it.second, it.first)); } // If no path exists return - 1 ; } // Driver code public static void main(String[] args) { int n = 3 ; // Graph as adjacency matrix ArrayList<ArrayList<Pair>> gr = new ArrayList<>(); for ( int i = 0 ; i < n + 1 ; i++) { gr.add( new ArrayList<Pair>()); } // Input edges gr.get( 1 ).add( new Pair( 3 , 9 )); gr.get( 2 ).add( new Pair( 3 , 1 )); gr.get( 1 ).add( new Pair( 2 , 5 )); // Source and destination int s = 1 , d = 3 ; System.out.println(minXorSumOfEdges(s, d, gr)); } } // This code is contributed by sanjeev2552 |
Python3
# Python3 implementation of the approach from collections import deque # Function to return the smallest # xor sum of edges def minXorSumOfEdges(s, d, gr): # If the source is equal # to the destination if (s = = d): return 0 # Initialise the priority queue pq = [] pq.append(( 0 , s)) # Visited array v = [ 0 ] * len (gr) # While the priority-queue # is not empty while ( len (pq) > 0 ): pq = sorted (pq) # Current node curr = pq[ 0 ][ 1 ] # Current xor sum of distance dist = pq[ 0 ][ 0 ] # Popping the top-most element del pq[ 0 ] # If already visited continue if (v[curr]): continue # Marking the node as visited v[curr] = 1 # If it is a destination node if (curr = = d): return dist # Traversing the current node for it in gr[curr]: pq.append((dist ^ it[ 1 ], it[ 0 ])) # If no path exists return - 1 # Driver code if __name__ = = '__main__' : n = 3 # Graph as adjacency matrix gr = [[] for i in range (n + 1 )] # Input edges gr[ 1 ].append([ 3 , 9 ]) gr[ 2 ].append([ 3 , 1 ]) gr[ 1 ].append([ 2 , 5 ]) # Source and destination s = 1 d = 3 print (minXorSumOfEdges(s, d, gr)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to return the smallest // xor sum of edges static int minXorSumOfEdges( int s, int d, List<List<Tuple< int , int >>> gr) { // If the source is equal // to the destination if (s == d) return 0; // Initialise the priority queue List<Tuple< int , int >> pq = new List<Tuple< int , int >>(); pq.Add( new Tuple< int , int >(0, s)); // Visited array int [] v = new int [gr.Count]; // While the priority-queue // is not empty while (pq.Count > 0) { pq.Sort(); // Current node int curr = pq[0].Item2; // Current xor sum of distance int dist = pq[0].Item1; // Popping the top-most element pq.RemoveAt(0); // If already visited continue if (v[curr] != 0) continue ; // Marking the node as visited v[curr] = 1; // If it is a destination node if (curr == d) return dist; // Traversing the current node foreach (Tuple< int , int > it in gr[curr]) { pq.Add( new Tuple< int , int >(dist ^ it.Item2, it.Item1)); } } // If no path exists return -1; } // Driver code static void Main() { int n = 3; // Graph as adjacency matrix List<List<Tuple< int , int >>> gr = new List<List<Tuple< int , int >>>(); for ( int i = 0; i < n + 1; i++) { gr.Add( new List<Tuple< int , int >>()); } // Input edges gr[1].Add( new Tuple< int , int >(3, 9)); gr[2].Add( new Tuple< int , int >(3, 1)); gr[1].Add( new Tuple< int , int >(2, 5)); // Source and destination int s = 1; int d = 3; Console.WriteLine(minXorSumOfEdges(s, d, gr)); } } // This code is contributed by divyesh072019. |
Javascript
<script> // Javascript implementation of the approach // Function to return the smallest // xor sum of edges function minXorSumOfEdges(s, d, gr) { // If the source is equal // to the destination if (s == d) return 0; // Initialise the priority queue let pq = []; pq.push([0, s]); // Visited array let v = new Array(gr.length); // While the priority-queue // is not empty while (pq.length != 0) { pq.sort( function (a, b){ return a[0] - b[0];}); // Iterator<Pair> itr = pq.iterator(); // Current node let p = pq.shift(); let curr = p[1]; // Current xor sum of distance let dist = p[0]; // If already visited continue if (v[curr]) continue ; // Marking the node as visited v[curr] = true ; // If it is a destination node if (curr == d) return dist; // Traversing the current node for (let it = 0; it < gr[curr].length; it++) pq.push([dist ^ gr[curr][it][1], gr[curr][it][0]]); } // If no path exists return -1; } // Driver code let n = 3; // Graph as adjacency matrix let gr = []; for (let i = 0; i < n + 1; i++) { gr.push([]); } // Input edges gr[1].push([3, 9]); gr[2].push([3, 1]); gr[1].push([2, 5]); // Source and destination let s = 1, d = 3; document.write(minXorSumOfEdges(s, d, gr)); // This code is contributed by unknown2108 </script> |
4
Time complexity: O((E + V) logV)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!