Given a square matrix of size N*N, where each cell is associated with a specific cost. A path is defined as a specific sequence of cells that starts from the top-left cell move only right or down and ends on bottom right cell. We want to find a path with the maximum average over all existing paths. Average is computed as total cost divided by the number of cells visited in the path.
Examples:
Input : Matrix = [1, 2, 3 4, 5, 6 7, 8, 9] Output : 5.8 Path with maximum average is, 1 -> 4 -> 7 -> 8 -> 9 Sum of the path is 29 and average is 29/5 = 5.8
One interesting observation is, the only allowed moves are down and right, we need N-1 down moves and N-1 right moves to reach the destination (bottom rightmost). So any path from top left corner to bottom right corner requires 2N – 1 cells. In average value, the denominator is fixed and we need to just maximize numerator. Therefore we basically need to find the maximum sum path. Calculating maximum sum of path is a classic dynamic programming problem, if dp[i][j] represents maximum sum till cell (i, j) from (0, 0) then at each cell (i, j), we update dp[i][j] as below,
for all i, 1 <= i <= N dp[i][0] = dp[i-1][0] + cost[i][0]; for all j, 1 <= j <= N dp[0][j] = dp[0][j-1] + cost[0][j]; otherwise dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + cost[i][j];
Once we get maximum sum of all paths we will divide this sum by (2N – 1) and we will get our maximum average.
Implementation:
C++
//C/C++ program to find maximum average cost path #include <bits/stdc++.h> using namespace std; // Maximum number of rows and/or columns const int M = 100; // method returns maximum average of all path of // cost matrix double maxAverageOfPath( int cost[M][M], int N) { int dp[N+1][N+1]; dp[0][0] = cost[0][0]; /* Initialize first column of total cost(dp) array */ for ( int i = 1; i < N; i++) dp[i][0] = dp[i-1][0] + cost[i][0]; /* Initialize first row of dp array */ for ( int j = 1; j < N; j++) dp[0][j] = dp[0][j-1] + cost[0][j]; /* Construct rest of the dp array */ for ( int i = 1; i < N; i++) for ( int j = 1; j <= N; j++) dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return ( double )dp[N-1][N-1] / (2*N-1); } /* Driver program to test above functions */ int main() { int cost[M][M] = { {1, 2, 3}, {6, 5, 4}, {7, 3, 9} }; printf ( "%f" , maxAverageOfPath(cost, 3)); return 0; } |
Java
// JAVA Code for Path with maximum average // value import java.io.*; class GFG { // method returns maximum average of all // path of cost matrix public static double maxAverageOfPath( int cost[][], int N) { int dp[][] = new int [N+ 1 ][N+ 1 ]; dp[ 0 ][ 0 ] = cost[ 0 ][ 0 ]; /* Initialize first column of total cost(dp) array */ for ( int i = 1 ; i < N; i++) dp[i][ 0 ] = dp[i- 1 ][ 0 ] + cost[i][ 0 ]; /* Initialize first row of dp array */ for ( int j = 1 ; j < N; j++) dp[ 0 ][j] = dp[ 0 ][j- 1 ] + cost[ 0 ][j]; /* Construct rest of the dp array */ for ( int i = 1 ; i < N; i++) for ( int j = 1 ; j < N; j++) dp[i][j] = Math.max(dp[i- 1 ][j], dp[i][j- 1 ]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return ( double )dp[N- 1 ][N- 1 ] / ( 2 * N - 1 ); } /* Driver program to test above function */ public static void main(String[] args) { int cost[][] = {{ 1 , 2 , 3 }, { 6 , 5 , 4 }, { 7 , 3 , 9 }}; System.out.println(maxAverageOfPath(cost, 3 )); } } // This code is contributed by Arnav Kr. Mandal. |
Python3
# Python program to find # maximum average cost path # Maximum number of rows # and/or columns M = 100 # method returns maximum average of # all path of cost matrix def maxAverageOfPath(cost, N): dp = [[ 0 for i in range (N + 1 )] for j in range (N + 1 )] dp[ 0 ][ 0 ] = cost[ 0 ][ 0 ] # Initialize first column of total cost(dp) array for i in range ( 1 , N): dp[i][ 0 ] = dp[i - 1 ][ 0 ] + cost[i][ 0 ] # Initialize first row of dp array for j in range ( 1 , N): dp[ 0 ][j] = dp[ 0 ][j - 1 ] + cost[ 0 ][j] # Construct rest of the dp array for i in range ( 1 , N): for j in range ( 1 , N): dp[i][j] = max (dp[i - 1 ][j], dp[i][j - 1 ]) + cost[i][j] # divide maximum sum by constant path # length : (2N - 1) for getting average return dp[N - 1 ][N - 1 ] / ( 2 * N - 1 ) # Driver program to test above function cost = [[ 1 , 2 , 3 ], [ 6 , 5 , 4 ], [ 7 , 3 , 9 ]] print (maxAverageOfPath(cost, 3 )) # This code is contributed by Soumen Ghosh. |
C#
// C# Code for Path with maximum average // value using System; class GFG { // method returns maximum average of all // path of cost matrix public static double maxAverageOfPath( int [,]cost, int N) { int [,]dp = new int [N+1,N+1]; dp[0,0] = cost[0,0]; /* Initialize first column of total cost(dp) array */ for ( int i = 1; i < N; i++) dp[i, 0] = dp[i - 1,0] + cost[i, 0]; /* Initialize first row of dp array */ for ( int j = 1; j < N; j++) dp[0, j] = dp[0,j - 1] + cost[0, j]; /* Construct rest of the dp array */ for ( int i = 1; i < N; i++) for ( int j = 1; j < N; j++) dp[i, j] = Math.Max(dp[i - 1, j], dp[i,j - 1]) + cost[i, j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return ( double )dp[N - 1, N - 1] / (2 * N - 1); } // Driver Code public static void Main() { int [,]cost = {{1, 2, 3}, {6, 5, 4}, {7, 3, 9}}; Console.Write(maxAverageOfPath(cost, 3)); } } // This code is contributed by nitin mittal. |
PHP
<?php // Php program to find maximum average cost path // method returns maximum average of all path of // cost matrix function maxAverageOfPath( $cost , $N ) { $dp = array ( array ()) ; $dp [0][0] = $cost [0][0]; /* Initialize first column of total cost(dp) array */ for ( $i = 1; $i < $N ; $i ++) $dp [ $i ][0] = $dp [ $i -1][0] + $cost [ $i ][0]; /* Initialize first row of dp array */ for ( $j = 1; $j < $N ; $j ++) $dp [0][ $j ] = $dp [0][ $j -1] + $cost [0][ $j ]; /* Construct rest of the dp array */ for ( $i = 1; $i < $N ; $i ++) { for ( $j = 1; $j <= $N ; $j ++) $dp [ $i ][ $j ] = max( $dp [ $i -1][ $j ], $dp [ $i ][ $j -1]) + $cost [ $i ][ $j ]; } // divide maximum sum by constant path // length : (2N - 1) for getting average return $dp [ $N -1][ $N -1] / (2* $N -1); } // Driver code $cost = array ( array (1, 2, 3), array ( 6, 5, 4), array (7, 3, 9) ) ; echo maxAverageOfPath( $cost , 3) ; // This code is contributed by Ryuga ?> |
Javascript
<script> // JavaScript Code for Path with maximum average value // method returns maximum average of all // path of cost matrix function maxAverageOfPath(cost, N) { let dp = new Array(N+1); for (let i = 0; i < N + 1; i++) { dp[i] = new Array(N + 1); for (let j = 0; j < N + 1; j++) { dp[i][j] = 0; } } dp[0][0] = cost[0][0]; /* Initialize first column of total cost(dp) array */ for (let i = 1; i < N; i++) dp[i][0] = dp[i-1][0] + cost[i][0]; /* Initialize first row of dp array */ for (let j = 1; j < N; j++) dp[0][j] = dp[0][j-1] + cost[0][j]; /* Construct rest of the dp array */ for (let i = 1; i < N; i++) for (let j = 1; j < N; j++) dp[i][j] = Math.max(dp[i-1][j], dp[i][j-1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return dp[N-1][N-1] / (2 * N - 1); } let cost = [[1, 2, 3], [6, 5, 4], [7, 3, 9]]; document.write(maxAverageOfPath(cost, 3)); </script> |
5.200000
Time complexity: O(N2) for given input N
Auxiliary Space: O(N2) for given input N.
Method – 2: Without using Extra N*N space
We can use input cost array as a dp to store the ans. so this way we don’t need an extra dp array or no that extra space.\
One observation is that the only allowed moves are down and right, we need N-1 down moves and N-1 right moves to reach the destination (bottom rightmost). So any path from top left corner to bottom right corner requires 2N – 1 cell. In average value, the denominator is fixed and we need to just maximize numerator. Therefore we basically need to find the maximum sum path. Calculating maximum sum of path is a classic dynamic programming problem, also we don’t need any prev cost[i][j] value after calculating dp[i][j] so we can modifies the cost[i][j] value such that we don’t need extra space for dp[i][j].
for all i, 1 <= i < N cost[i][0] = cost[i-1][0] + cost[i][0]; for all j, 1 <= j < N cost[0][j] = cost[0][j-1] + cost[0][j]; otherwise cost[i][j] = max(cost[i-1][j], cost[i][j-1]) + cost[i][j];
Below is the implementation of the above approach:
C++
// C++ program to find maximum average cost path #include <bits/stdc++.h> using namespace std; // Method returns maximum average of all path of cost matrix double maxAverageOfPath(vector<vector< int >>cost) { int N = cost.size(); // Initialize first column of total cost array for ( int i = 1; i < N; i++) cost[i][0] = cost[i][0] + cost[i - 1][0]; // Initialize first row of array for ( int j = 1; j < N; j++) cost[0][j] = cost[0][j - 1] + cost[0][j]; // Construct rest of the array for ( int i = 1; i < N; i++) for ( int j = 1; j <= N; j++) cost[i][j] = max(cost[i - 1][j], cost[i][j - 1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return ( double )cost[N - 1][N - 1] / (2 * N - 1); } // Driver program int main() { vector<vector< int >> cost = {{1, 2, 3}, {6, 5, 4}, {7, 3, 9} }; cout << maxAverageOfPath(cost); return 0; } |
Java
// Java program to find maximum average cost path import java.io.*; class GFG { // Method returns maximum average of all path of cost // matrix static double maxAverageOfPath( int [][] cost) { int N = cost.length; // Initialize first column of total cost array for ( int i = 1 ; i < N; i++) cost[i][ 0 ] = cost[i][ 0 ] + cost[i - 1 ][ 0 ]; // Initialize first row of array for ( int j = 1 ; j < N; j++) cost[ 0 ][j] = cost[ 0 ][j - 1 ] + cost[ 0 ][j]; // Construct rest of the array for ( int i = 1 ; i < N; i++) for ( int j = 1 ; j < N; j++) cost[i][j] = Math.max(cost[i - 1 ][j], cost[i][j - 1 ]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return ( double )cost[N - 1 ][N - 1 ] / ( 2 * N - 1 ); } // Driver program public static void main(String[] args) { int [][] cost = { { 1 , 2 , 3 }, { 6 , 5 , 4 }, { 7 , 3 , 9 } }; System.out.println(maxAverageOfPath(cost)); } } // This code is contributed by karandeep1234 |
Python3
# Python program to find maximum average cost path from typing import List def maxAverageOfPath(cost: List [ List [ int ]]) - > float : N = len (cost) # Initialize first column of total cost array for i in range ( 1 , N): cost[i][ 0 ] = cost[i][ 0 ] + cost[i - 1 ][ 0 ] # Initialize first row of array for j in range ( 1 , N): cost[ 0 ][j] = cost[ 0 ][j - 1 ] + cost[ 0 ][j] # Construct rest of the array for i in range ( 1 , N): for j in range ( 1 , N): cost[i][j] = max (cost[i - 1 ][j], cost[i][j - 1 ]) + cost[i][j] # divide maximum sum by constant path # length : (2N - 1) for getting average return cost[N - 1 ][N - 1 ] / ( 2 * N - 1 ) # Driver program def main(): cost = [[ 1 , 2 , 3 ], [ 6 , 5 , 4 ], [ 7 , 3 , 9 ]] print (maxAverageOfPath(cost)) if __name__ = = '__main__' : main() |
C#
// C# program to find maximum average cost path using System; class GFG { // Method returns maximum average of all path of cost // matrix static double maxAverageOfPath( int [, ] cost) { int N = cost.GetLength(0); // Initialize first column of total cost array for ( int i = 1; i < N; i++) cost[i, 0] = cost[i, 0] + cost[i - 1, 0]; // Initialize first row of array for ( int j = 1; j < N; j++) cost[0, j] = cost[0, j - 1] + cost[0, j]; // Construct rest of the array for ( int i = 1; i < N; i++) for ( int j = 1; j < N; j++) cost[i, j] = Math.Max(cost[i - 1, j], cost[i, j - 1]) + cost[i, j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return ( double )cost[N - 1, N - 1] / (2 * N - 1); } // Driver program static void Main( string [] args) { int [, ] cost = { { 1, 2, 3 }, { 6, 5, 4 }, { 7, 3, 9 } }; Console.WriteLine(maxAverageOfPath(cost)); } } // This code is contributed by karandeep1234 |
Javascript
// Method returns maximum average of all path of cost matrix function maxAverageOfPath(cost) { let N = cost.length; // Initialize first column of total cost array for (let i = 1; i < N; i++) cost[i][0] = cost[i][0] + cost[i - 1][0]; // Initialize first row of array for (let j = 1; j < N; j++) cost[0][j] = cost[0][j - 1] + cost[0][j]; // Construct rest of the array for (let i = 1; i < N; i++) for (let j = 1; j <= N; j++) cost[i][j] = Math.max(cost[i - 1][j], cost[i][j - 1]) + cost[i][j]; // divide maximum sum by constant path // length : (2N - 1) for getting average return (cost[N - 1][N - 1]) / (2.0 * N - 1); } // Driver program let cost = [[1, 2, 3], [6, 5, 4], [7, 3, 9]]; console.log(maxAverageOfPath(cost)) // This code is contributed by karandeep1234. |
5.2
Time Complexity: O(N*N)
Auxiliary Space: O(1)
This article is contributed by Utkarsh Trivedi. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!