Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPath from the root node to a given node in an N-ary...

Path from the root node to a given node in an N-ary Tree

Given an integer N and an N-ary Tree of the following form: 

  • Every node is numbered sequentially, starting from 1, till the last level, which contains the node N.
  • The nodes at every odd level contains 2 children and nodes at every even level contains 4 children.

The task is to print the path from the root node to the node N

Examples:
 

Input: N = 14 
 

Output: 1 2 5 14 
Explanation: The path from node 1 to node 14 is 1 – > 2 – > 5 – > 14.

Input: N = 11 
Output: 1 3 11 
Explanation: The path from node 1 to node 11 is 1 – > 3 – > 11.

Approach: Follow the steps below to solve the problem:

  • Initialize an array to store the number of nodes present in each level of the Tree, i.e. {1, 2, 8, 16, 64, 128 ….} and store it.
  • Calculate prefix sum of the array i.e. {1 3 11 27 91 219 …….}
  • Find the index ind in the prefix sum array which exceeds or is equal to N using lower_bound(). Therefore, ind indicates the number of levels that need to be traversed to reach node N.
  • Initialize a variable say, temp = N and an array path[] to store the nodes from root to N.
  • Decrement ind until it is less than or equal to 1 and keep updating val = temp – prefix[ind – 1].
  • Update temp = prefix[ind – 2] + (val + 1) / 2 if ind is odd.
  • Otherwise, update temp = prefix[ind – 2] + (val + 3) / 4 if ind is even.
  • Append temp into the path[] array.
  • Finally, print the array, path[].

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
 
// Function to find the path
// from root to N
void PrintPathNodes(ll N)
{
 
    // Stores the number of
    // nodes at (i + 1)-th level
    vector<ll> arr;
    arr.push_back(1);
 
    // Stores the number of nodes
    ll k = 1;
 
    // Stores if the current
    // level is even or odd
    bool flag = true;
 
    while (k < N) {
 
        // If level is odd
        if (flag == true) {
            k *= 2;
            flag = false;
        }
 
        // If level is even
        else {
 
            k *= 4;
            flag = true;
        }
 
        // If level with
        // node N is reached
        if (k > N) {
            break;
        }
 
        // Push into vector
        arr.push_back(k);
    }
 
    ll len = arr.size();
    vector<ll> prefix(len);
    prefix[0] = 1;
 
    // Compute prefix sums of count
    // of nodes in each level
    for (ll i = 1; i < len; ++i) {
        prefix[i] = arr[i] + prefix[i - 1];
    }
 
    vector<ll>::iterator it
        = lower_bound(prefix.begin(),
                      prefix.end(), N);
 
    // Stores the level in which
    // node N s present
    ll ind = it - prefix.begin();
 
    ll temp = N;
 
    // Store path
    vector<int> path;
 
    path.push_back(N);
 
    while (ind > 1) {
        ll val = temp - prefix[ind - 1];
 
        if (ind % 2 != 0) {
            temp = prefix[ind - 2]
                   + (val + 1) / 2;
        }
        else {
            temp = prefix[ind - 2]
                   + (val + 3) / 4;
        }
        --ind;
 
        // Insert temp into path
        path.push_back(temp);
    }
 
    if (N != 1)
        path.push_back(1);
 
    // Print path
    for (int i = path.size() - 1;
         i >= 0; i--) {
 
        cout << path[i] << " ";
    }
}
 
// Driver Code
int main()
{
 
    ll N = 14;
 
    // Function Call
    PrintPathNodes(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
public class Main {
    // Function to find the path
    // from root to N
    static void PrintPathNodes(long N)
    {
        // Stores the number of
        // nodes at (i + 1)-th level
        ArrayList<Long> arr = new ArrayList<>();
        arr.add((long)1);
     
        // Stores the number of nodes
        long k = 1;
     
        // Stores if the current
        // level is even or odd
        boolean flag = true;
     
        while (k < N) {
     
            // If level is odd
            if (flag == true) {
                k *= 2;
                flag = false;
            }
     
            // If level is even
            else {
     
                k *= 4;
                flag = true;
            }
     
            // If level with
            // node N is reached
            if (k > N) {
                break;
            }
     
            // Push into array
            arr.add(k);
        }
     
        long len = arr.size();
        ArrayList<Long> prefix = new ArrayList<>();
        prefix.add((long)1);
     
        // Compute prefix sums of count
        // of nodes in each level
        for (long i = 1; i < len; ++i) {
            prefix.add(arr.get((int)i) + prefix.get((int)i - 1));
        }
     
        int ind = Collections.binarySearch(prefix, N);
     
        // Stores the level in which
        // node N s present
        if (ind < 0) {
            ind = -ind - 1;
        }
     
        long temp = N;
     
        // Store path
        ArrayList<Long> path = new ArrayList<>();
        path.add(N);
     
        while (ind > 1) {
            long val = temp - prefix.get((int)ind - 1);
     
            if (ind % 2 != 0) {
                temp = prefix.get((int)ind - 2)
                       + (val + 1) / 2;
            }
            else {
                temp = prefix.get((int)ind - 2)
                       + (val + 3) / 4;
            }
            --ind;
     
            // Insert temp into path
            path.add(temp);
        }
     
        if (N != 1)
            path.add((long)1);
     
        // Print path
        for (int i = path.size() - 1;
             i >= 0; i--) {
     
            System.out.print(path.get(i) + " ");
        }
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        long N = 14;
     
        // Function Call
        PrintPathNodes(N);
    }
}
 
// This code is contributed by princekumaras


Python3




# Python3 program for the above approach
from bisect import bisect_left
 
# Function to find the path
# from root to N
def PrintPathNodes(N):
 
    # Stores the number of
    # nodes at (i + 1)-th level
    arr = []
    arr.append(1)
 
    # Stores the number of nodes
    k = 1
 
    # Stores if the current
    # level is even or odd
    flag = True
    while (k < N):
 
        # If level is odd
        if (flag == True):
            k *= 2
            flag = False
 
        # If level is even
        else:
            k *= 4
            flag = True
 
        # If level with
        # node N is reached
        if (k > N):
            break
 
        # Push into vector
        arr.append(k)
    lenn = len(arr)
    prefix = [0]*(lenn)
    prefix[0] = 1
 
    # Compute prefix sums of count
    # of nodes in each level
    for i in range(1,lenn):
        prefix[i] = arr[i] + prefix[i - 1]
    it = bisect_left(prefix, N)
 
    # Stores the level in which
    # node N s present
    ind = it
    temp = N
 
    # Store path
    path = []
    path.append(N)
    while (ind > 1):
        val = temp - prefix[ind - 1]
 
        if (ind % 2 != 0):
            temp = prefix[ind - 2] + (val + 1) // 2
        else:
            temp = prefix[ind - 2] + (val + 3) // 4
        ind -= 1
 
        # Insert temp into path
        path.append(temp)
    if (N != 1):
        path.append(1)
 
    # Print path
    for i in range(len(path)-1, -1, -1):
        print(path[i], end=" ")
 
# Driver Code
if __name__ == '__main__':
    N = 14
 
    # Function Call
    PrintPathNodes(N)
 
    # This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to find the path
  // from root to N
  static void PrintPathNodes(long N)
  {
 
    // Stores the number of
    // nodes at (i + 1)-th level
    List<long> arr = new List<long>();
    arr.Add((long)1);
 
    // Stores the number of nodes
    long k = 1;
 
    // Stores if the current
    // level is even or odd
    bool flag = true;
 
    while (k < N) {
 
      // If level is odd
      if (flag == true) {
        k *= 2;
        flag = false;
      }
 
      // If level is even
      else {
 
        k *= 4;
        flag = true;
      }
 
      // If level with
      // node N is reached
      if (k > N) {
        break;
      }
 
      // Push into array
      arr.Add(k);
    }
 
    long len = arr.Count;
    List<long> prefix = new List<long>();
    prefix.Add((long)1);
 
    // Compute prefix sums of count
    // of nodes in each level
    for (long i = 1; i < len; ++i) {
      prefix.Add(arr[(int)i] + prefix[(int)i - 1]);
    }
 
    int ind = prefix.BinarySearch(N);
 
    // Stores the level in which
    // node N s present
    if (ind < 0) {
      ind = -ind - 1;
    }
 
    long temp = N;
 
    // Store path
    List<long> path = new List<long>();
    path.Add(N);
 
    while (ind > 1) {
      long val = temp - prefix[(int)ind - 1];
 
      if (ind % 2 != 0) {
        temp = prefix[(int)ind - 2] + (val + 1) / 2;
      }
      else {
        temp = prefix[(int)ind - 2] + (val + 3) / 4;
      }
      --ind;
 
      // Insert temp into path
      path.Add(temp);
    }
 
    if (N != 1)
      path.Add((long)1);
 
    // Print path
    for (int i = path.Count - 1; i >= 0; i--) {
 
      Console.Write(path[i] + " ");
    }
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    long N = 14;
 
    // Function Call
    PrintPathNodes(N);
  }
}
 
// This code is contributed by phasing17


Javascript




// JavaScript program for the above approach
function bisect_left(a, x, lo = 0, hi = a.length) {
    while (lo < hi) {
        let mid = Math.floor((lo + hi) / 2);
        if (a[mid] < x) {
            lo = mid + 1;
        } else {
            hi = mid;
        }
    }
    return lo;
}
 
 
// Function to find the path
// from root to N
function PrintPathNodes(N) {
 
 
    // Stores the number of
    // nodes at (i + 1)-th level
    let arr = [];
    arr.push(1);
 
    // Stores the number of nodes
    let k = 1;
 
    // Stores if the current
    // level is even or odd
    let flag = true;
    while (k < N) {
 
        // If level is odd
        if (flag === true) {
            k *= 2;
            flag = false;
        }
 
        // If level is even
        else {
            k *= 4;
            flag = true;
        }
 
        // If level with
        // node N is reached
        if (k > N) {
            break;
        }
 
        // Push into array
        arr.push(k);
    }
    let lenn = arr.length;
    let prefix = new Array(lenn).fill(0);
    prefix[0] = 1;
 
    // Compute prefix sums of count
    // of nodes in each level
    for (let i = 1; i < lenn; i++) {
        prefix[i] = arr[i] + prefix[i - 1];
    }
    let it = bisect_left(prefix, N);
 
    // Stores the level in which
    // node N s present
    let ind = it;
    let temp = N;
 
    // Store path
    let path = [];
    path.push(N);
    while (ind > 1) {
        let val = temp - prefix[ind - 1];
 
        if (ind % 2 !== 0) {
            temp = prefix[ind - 2] + Math.floor((val + 1) / 2);
        } else {
            temp = prefix[ind - 2] + Math.floor((val + 3) / 4);
        }
        ind -= 1;
 
        // Insert temp into path
        path.push(temp);
    }
    if (N !== 1) {
        path.push(1);
    }
 
    // Print path
    for (let i = path.length - 1; i >= 0; i--) {
        process.stdout.write(path[i] + " ");
    }
 
}
 
// Driver Code
let N = 14;
 
// Function Call
PrintPathNodes(N);
 
// This code is contributed by phasing17


Output: 

1 2 5 14

 

Time Complexity: O(log(N))
Auxiliary Space: O(log(N))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments