Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPartition Array into 3 Subarrays to maximize the product of sums

Partition Array into 3 Subarrays to maximize the product of sums

You are given an array A[] of size N, the task is to divide the array into exactly three subarrays such that every element belongs to exactly one subarray such that the product of the sum of the subarrays is the maximum.

Examples:

Input: N = 4, A[] = { 1, 2, 2, 3}
Output: 18
Explanation: The optimal partitions are {1, 2}, {2}, {3}

Input: N = 3, A[] = { 3, 5, 7}
Output: 105
Explanation: There is only one possible partition {3}, {5}, {7}.

Approach: This problem can be solved using the concept of sliding window and prefix-suffix array.

First, calculate the maximum product of 2 subarrays considering the size of the array from 0 to N starting from right. Now once we have the maximum product of 2 subarrays then the 3rd subarray will be on the left side.

For example, if we have calculated the maximum product of two subarrays for all the arrays starting from i to N where 0 < i < N – 1 then the third subarray will be subarray from 0 to i. And now we can calculate the maximum product of these two subarrays to get maximum product of 3 subarrays.

Follow the steps mentioned below to implement the idea.

  • Create a suffix array of size N.
  • Create two variables x and y to store the sum of the first two subarrays and initialize them as A[N-2] and A[N-1].
  • Initialize suff[N-1] as the product of x and y.
  • Now expand the subarray with sum x by 1 and keep sliding the subarray with sum y towards the subarray with sum x until suff[i] is less than x*y and update suff[i] as x*y.
  • Finally, run a loop to calculate the maximum product between subarray 0 to i and the maximum product of two subarrays from i to N i.e. suff[i].

Below is the implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum product
long long subarrayProduct(int n, int a[])
{
    // Array to store the maximum product of
    // sum of two subarrays from i to N-1
    vector<long long> suff(n, 0);
 
    long long x = a[n - 2], y = a[n - 1];
    suff[n - 2] = x * y;
    int j = n - 1;
 
    // Loop to calculate the value of suff array
    for (int i = n - 3; i >= 0; i--) {
        x += a[i];
        suff[i] = x * y;
        while (suff[i] < (x - a[j - 1]) * (y + a[j - 1])) {
            j--;
            x -= a[j];
            y += a[j];
            suff[i] = x * y;
        }
    }
    long long l = 0, ans = 0;
 
    // Loop to calculate the maximum product of sums
    for (int i = 0; i + 2 < n; i++) {
        l += a[i];
        ans = max(ans, l * suff[i + 1]);
    }
    return ans;
}
 
// Driver code
int main()
{
    int A[] = { 1, 2, 2, 3 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // Function call
    cout << subarrayProduct(N, A) << endl;
    return 0;
}


Java




public class GFG
{
 
  // Function to find the maximum product
  static int subarrayProduct(int n, int a[])
  {
 
    // Array to store the maximum product of
    // sum of two subarrays from i to N-1
    int suff[] = new int[n];
    for (int i = 0; i < n; i++)
      suff[i] = 0;
 
    int x = a[n - 2], y = a[n - 1];
    suff[n - 2] = x * y;
    int j = n - 1;
 
    // Loop to calculate the value of suff array
    for (int i = n - 3; i >= 0; i--) {
      x += a[i];
      suff[i] = x * y;
      while (suff[i]
             < (x - a[j - 1]) * (y + a[j - 1])) {
        j--;
        x -= a[j];
        y += a[j];
        suff[i] = x * y;
      }
    }
    int l = 0, ans = 0;
 
    // Loop to calculate the maximum product of sums
    for (int i = 0; i + 2 < n; i++) {
      l += a[i];
      ans = Math.max(ans, l * suff[i + 1]);
    }
    return ans;
  }
 
  public static void main(String[] args)
  {
    int A[] = { 1, 2, 2, 3 };
 
    // Function call
    System.out.println(subarrayProduct(4, A));
  }
}
 
// This code is contributed by garg28harsh.


Python3




# Python3 code for the above approach
 
# Function to find the maximum product
def subarrayProduct(n, a) :
     
    # Array to store the maximum product of
    # sum of two subarrays from i to N-1
    suff = [0] * n;
 
    x = a[n - 2];
    y = a[n - 1];
    suff[n - 2] = x * y;
    j = n - 1;
 
    # Loop to calculate the value of suff array
    for i in range(n - 3, -1, -1) :
        x += a[i];
        suff[i] = x * y;
        while (suff[i] < (x - a[j - 1]) * (y + a[j - 1])) :
            j -= 1;
            x -= a[j];
            y += a[j];
            suff[i] = x * y;
     
    l = 0;
    ans = 0;
 
    # Loop to calculate the maximum product of sums
    for i in range(n-2) :
        l += a[i];
        ans = max(ans, l * suff[i + 1]);
         
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    A = [ 1, 2, 2, 3 ];
    N = len(A);
 
    # Function call
    print(subarrayProduct(N, A));
   
    # This code is contributed by AnkThon


C#




using System;
using System.Collections.Generic;
 
public class GFG {
 
  // Function to find the maximum product
  public static long subarrayProduct(int n, int[] a)
  {
    // Array to store the maximum product of
    // sum of two subarrays from i to N-1
    List<long> suff = new List<long>();
    for (int i = 0; i < n; i++) {
      suff.Add(0);
    }
    long x = a[n - 2];
    long y = a[n - 1];
    suff[n - 2] = x * y;
    int j = n - 1;
 
    // Loop to calculate the value of suff array
    for (int i = n - 3; i >= 0; i--) {
      x += a[i];
      suff[i] = x * y;
      while (suff[i]
             < (x - a[j - 1]) * (y + a[j - 1])) {
        j--;
        x -= a[j];
        y += a[j];
        suff[i] = x * y;
      }
    }
    long l = 0;
    long ans = 0;
 
    // Loop to calculate the maximum product of sums
    for (int i = 0; i + 2 < n; i++) {
      l += a[i];
      ans = Math.Max(ans, l * suff[i + 1]);
    }
    return ans;
  }
 
  // Driver code
  static public void Main()
  {
 
    int[] A = { 1, 2, 2, 3 };
    int N = A.Length;
 
    // Function call
    Console.WriteLine(subarrayProduct(N, A));
  }
}
 
// This code is contributed by akashish__


Javascript




       // JavaScript code for the above approach
 
       // Function to find the maximum product
       function subarrayProduct(n, a) {
           // Array to store the maximum product of
           // sum of two subarrays from i to N-1
           let suff = new Array(n).fill(0);
 
           let x = a[n - 2], y = a[n - 1];
           suff[n - 2] = x * y;
           let j = n - 1;
 
           // Loop to calculate the value of suff array
           for (let i = n - 3; i >= 0; i--) {
               x += a[i];
               suff[i] = x * y;
               while (suff[i] < (x - a[j - 1]) * (y + a[j - 1])) {
                   j--;
                   x -= a[j];
                   y += a[j];
                   suff[i] = x * y;
               }
           }
           let l = 0, ans = 0;
 
           // Loop to calculate the maximum product of sums
           for (let i = 0; i + 2 < n; i++) {
               l += a[i];
               ans = Math.max(ans, l * suff[i + 1]);
           }
           return ans;
       }
 
       // Driver code
 
       let A = [1, 2, 2, 3];
       let N = A.length;
 
       // Function call
       console.log(subarrayProduct(N, A) + "<br>");
 
// This code is contributed by Potta Lokesh


Output

18

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments