Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIPartial derivative of a polynomial using Doubly Linked List

Partial derivative of a polynomial using Doubly Linked List

Given a 2-variable polynomial represented by a doubly linked list, the task is to find the partial derivative of a polynomial stored in the doubly-linked list.

Examples:

Input: P(x, y) = 2(x^3 y^4) + 3(x^5 y^7) + 1(x^2 y^6)
Output:
Partial derivatives w.r.t. x: 6(x^2 y^4) + 15(x^4 y^7) + 2(x^1 y^6)
Partial derivatives w.r.t. y: 24(x^2 y^3) + 105(x^4 y^6) + 12(x^1 y^5)
Partial derivatives w.r.t. x and y: 144(x^1 y^2) + 2520(x^3 y^5) + 60(x^0 y^4)

Input: P(x, y) = 3(x^2 y^1) + 4(x^2 y^3) + 2(x^4 y^7)
Output:
Partial derivatives w.r.t. x: 6(x^1 y^1) + 8(x^1 y^3) + 8(x^3 y^7)
Partial derivatives w.r.t. y: 6(x^1 y^0) + 24(x^1 y^2) + 56(x^3 y^6)
Partial derivatives w.r.t. x and y: 48(x^0 y^1) + 1008(x^2 y^5)

Approach: Follow the steps below to solve this problem:

  • Declare a class or structure to store the contents of a node, i.e. data representing the coefficient, power1 representing the power to which x is raised, power2 representing the power to which y is raised, and the pointers to its next and previous node.
  • Declare functions to calculate derivatives with respect to x, derivative with respect to y, and derivative with respect to x and y.
  • Calculate and print the derivatives obtained.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a node
struct node {
    node* link1 = NULL;
    node* link2 = NULL;
    int data = 0;
    int pow1 = 0;
    int pow2 = 0;
};
 
// Function to generate Doubly Linked
// List from given parameters
void input_equation(node*& head, int d,
                    int p1, int p2)
{
    node* temp = head;
 
    // If list is empty
    if (head == NULL) {
 
        // Create new node
        node* ptr = new node();
        ptr->data = d;
        ptr->pow1 = p1;
        ptr->pow2 = p2;
 
        // Set it as the head
        // of the linked list
        head = ptr;
    }
 
    // If list is not empty
    else {
 
        // Temporarily store
        // address of the head node
        temp = head;
 
        // Traverse the linked list
        while (temp->link2 != NULL) {
 
            // Link to next node
            temp = temp->link2;
        }
 
        // Create new node
        node* ptr = new node();
        ptr->data = d;
        ptr->pow1 = p1;
        ptr->pow2 = p2;
 
        // Connect the nodes
        ptr->link1 = temp;
        temp->link2 = ptr;
    }
}
 
// Function to calculate partial
// derivative w.r.t. X
void derivation_with_x(node*& head)
{
    cout << "Partial derivatives"
         << " w.r.t. x: ";
 
    node* temp = head;
 
    // Traverse the Linked List
    while (temp != NULL) {
 
        if (temp->pow1 != 0) {
            temp->data = (temp->data)
                         * (temp->pow1);
            temp->pow1 = temp->pow1 - 1;
        }
        else {
            temp->data = 0;
            temp->pow1 = 0;
            temp->pow2 = 0;
        }
 
        temp = temp->link2;
    }
 
    temp = head;
 
    cout << " " << temp->data
         << "(x^" << temp->pow1
         << " y^" << temp->pow2
         << ")";
    temp = temp->link2;
 
    while (temp != NULL) {
        cout << " + "
             << temp->data << "(x^"
             << temp->pow1 << " y^"
             << temp->pow2 << ")";
        temp = temp->link2;
    }
 
    cout << "\n";
}
 
// Function to calculate partial
// derivative w.r.t. Y
void derivation_with_y(node*& head)
{
    cout << "Partial derivatives"
         << " w.r.t. y: ";
 
    node* temp = head;
 
    // Traverse the Linked List
    while (temp != NULL) {
 
        if (temp->pow2 != 0) {
            temp->data = (temp->data)
                         * (temp->pow2);
            temp->pow2 = temp->pow2 - 1;
        }
        else {
            temp->data = 0;
            temp->pow1 = 0;
            temp->pow2 = 0;
        }
 
        temp = temp->link2;
    }
 
    temp = head;
    cout << " "
         << temp->data
         << "(x^" << temp->pow1
         << " y^"
         << temp->pow2 << ")";
    temp = temp->link2;
 
    while (temp != NULL) {
        cout << " + "
             << temp->data << "(x^"
             << temp->pow1 << " y^"
             << temp->pow2 << ")";
        temp = temp->link2;
    }
    cout << "\n";
}
 
// Function to calculate partial
// derivative w.r.t. XY
void derivation_with_x_y(node*& head)
{
    cout << "Partial derivatives"
         << " w.r.t. x and y: ";
 
    node* temp = head;
 
    // Derivative with respect to
    // the first variable
    while (temp != NULL) {
        if (temp->pow1 != 0) {
 
            temp->data = (temp->data)
                         * (temp->pow1);
            temp->pow1 = temp->pow1 - 1;
        }
 
        else {
            temp->data = 0;
            temp->pow1 = 0;
            temp->pow2 = 0;
        }
 
        temp = temp->link2;
    }
    temp = head;
 
    // Derivative with respect to
    // the second variable
    while (temp != NULL) {
 
        if (temp->pow2 != 0) {
            temp->data = (temp->data)
                         * (temp->pow2);
            temp->pow2 = temp->pow2 - 1;
        }
 
        else {
            temp->data = 0;
            temp->pow1 = 0;
            temp->pow2 = 0;
        }
 
        temp = temp->link2;
    }
 
    temp = head;
    cout << " "
         << temp->data << "(x^"
         << temp->pow1 << " y^"
         << temp->pow2 << ")";
 
    temp = temp->link2;
 
    // Print the list after the
    // calculating the derivative
    while (temp != NULL) {
 
        cout << " + "
             << temp->data << "(x^"
             << temp->pow1 << " y^"
             << temp->pow2 << ")";
        temp = temp->link2;
    }
    cout << "\n";
}
 
// Driver Code
int main()
{
    node* head1 = NULL;
 
    // Creating doubly-linked list
    input_equation(head1, 2, 3, 4);
    input_equation(head1, 3, 5, 7);
    input_equation(head1, 1, 2, 6);
 
    // Function Call
    derivation_with_x(head1);
    derivation_with_y(head1);
    derivation_with_x_y(head1);
 
    return 0;
}


Java




import java.util.*;
 
// Java code
// Structure of a node
class Node {
 
    public int data;
    public int pow1;
    public int pow2;
    public Node link1;
    public Node link2;
 
    public Node(int d, int p1, int p2)
    {
        data = d;
        pow1 = p1;
        pow2 = p2;
        link1 = null;
        link2 = null;
    }
}
 
class GFG {
 
    // Function to generate Doubly Linked
    // List from given parameters
    public static Node input_equation(Node head, int d,
                                      int p1, int p2)
    {
        Node temp = head;
        // If list is empty
        if (head == null) {
 
            // Set it as the head
            // of the linked list
            Node ptr = new Node(d, p1, p2);
            head = ptr;
            // If list is not empty
        }
        else {
            // Temporarily store
            // address of the head node
            temp = head;
            while (temp.link2 != null) {
                temp = temp.link2;
            }
            Node ptr = new Node(d, p1, p2);
            // Connect the nodes
            ptr.link1 = temp;
            temp.link2 = ptr;
        }
        return head;
    }
 
    // Function to calculate partial derivative w.r.t. X
    public static void derivation_with_x(Node head)
    {
        String tem = "Partial derivatives w.r.t. x: ";
        Node temp = head;
        while (temp != null) {
            if (temp.pow1 != 0) {
                temp.data = (temp.data) * (temp.pow1);
                temp.pow1 = temp.pow1 - 1;
            }
            else {
                temp.data = 0;
                temp.pow1 = 0;
                temp.pow2 = 0;
            }
            temp = temp.link2;
        }
        temp = head;
        if (temp.data != 0) {
            tem = tem + " " + temp.data + "(x^" + temp.pow1
                  + " y^" + temp.pow2 + ")";
        }
        temp = temp.link2;
        while (temp != null) {
            if (temp.data != 0) {
                tem = tem + " + " + temp.data + "(x^"
                      + temp.pow1 + " y^" + temp.pow2 + ")";
            }
            temp = temp.link2;
        }
        System.out.println(tem);
    }
 
    // Function to calculate partial
    // derivative w.r.t. Y
    public static void derivation_with_y(Node head)
    {
        String tem = "Partial derivatives w.r.t. y: ";
        Node temp = head;
        while (temp != null) {
            if (temp.pow2 != 0) {
                temp.data = (temp.data) * (temp.pow2);
                temp.pow2 = temp.pow2 - 1;
            }
            else {
                temp.data = 0;
                temp.pow1 = 0;
                temp.pow2 = 0;
            }
            temp = temp.link2;
        }
        temp = head;
        if (temp.data != 0) {
            tem = tem + " " + temp.data + "(x^" + temp.pow1
                  + " y^" + temp.pow2 + ")";
        }
        temp = temp.link2;
        while (temp != null) {
            if (temp.data != 0) {
                tem = tem + " + " + temp.data + "(x^"
                      + temp.pow1 + " y^" + temp.pow2 + ")";
            }
            temp = temp.link2;
        }
        System.out.println(tem);
    }
 
    // Function to calculate partial
    // derivative w.r.t. XY
    public static void derivation_with_x_y(Node head)
    {
        String tem = "Partial derivatives w.r.t. xy: ";
        Node temp = head;
        while (temp != null) {
            if (temp.pow1 != 0 && temp.pow2 != 0) {
                temp.data = (temp.data) * (temp.pow1)
                            * (temp.pow2);
                temp.pow1 = temp.pow1 - 1;
                temp.pow2 = temp.pow2 - 1;
            }
            else {
                temp.data = 0;
                temp.pow1 = 0;
                temp.pow2 = 0;
            }
            temp = temp.link2;
        }
        temp = head;
        if (temp.data != 0) {
            tem = tem + " " + temp.data + "(x^" + temp.pow1
                  + " y^" + temp.pow2 + ")";
        }
        temp = temp.link2;
        while (temp != null) {
            if (temp.data != 0) {
                tem = tem + " + " + temp.data + "(x^"
                      + temp.pow1 + " y^" + temp.pow2 + ")";
            }
            temp = temp.link2;
        }
        System.out.println(tem);
    }
 
    public static void main(String[] args)
    {
        // Creating doubly-linked list
        Node head = null;
        head = input_equation(head, 2, 3, 4);
        head = input_equation(head, 3, 5, 7);
        head = input_equation(head, 1, 2, 6);
 
        // Function Call
        derivation_with_x(head);
        derivation_with_y(head);
        derivation_with_x_y(head);
    }
}
 
// The code is contributed by phasing17


Python3




# Python code for the  above approach
# Structure of a node
class Node:
    def __init__(self, data, p1, p2):
        self.data = data
        self.pow1 = p1
        self.pow2 = p2
        self.link1 = None
        self.link2 = None
         
# Function to generate Doubly Linked
# List from given parameters
def input_equation(head, d, p1, p2):
    temp = head
    # If list is empty
    if head is None:
       
      # Set it as the head
       # of the linked list
        ptr = Node(d,p1,p2)
        head = ptr
        #If list is not empty
    else:
      # Temporarily store
      # address of the head node
        temp = head
        while temp.link2 is not None:
            temp = temp.link2
             
        
        ptr = Node(d,p1,p2)
        # Connect the nodes
        ptr.link1 = temp
        temp.link2 = ptr
    return head
 
# Function to calculate partial derivative w.r.t. X
def derivation_with_x(head):
    print("Partial derivatives w.r.t. x: ", end = "")
    temp = head
    while temp is not None:
        if temp.pow1 != 0:
            temp.data = (temp.data) * (temp.pow1)
            temp.pow1 = temp.pow1 - 1
        else:
            temp.data = 0
            temp.pow1 = 0
            temp.pow2 = 0
        temp = temp.link2
    temp = head
    if temp.data != 0:
        print(" " + str(temp.data) + "(x^" + str(temp.pow1) + " y^" + str(temp.pow2) + ")", end = "")
    temp = temp.link2
    while temp is not None:
        if temp.data != 0:
            print(" + " + str(temp.data) + "(x^" + str(temp.pow1) + " y^" + str(temp.pow2) + ")", end = "")
        temp = temp.link2
    print()
     
# Function to calculate partial
# derivative w.r.t. Y
def derivation_with_y(head):
    print("Partial derivatives w.r.t. y: ", end = "")
    temp = head
    while temp is not None:
        if temp.pow2 != 0:
            temp.data = (temp.data) * (temp.pow2)
            temp.pow2 = temp.pow2 - 1
        else:
            temp.data = 0
            temp.pow1 = 0
            temp.pow2 = 0
        temp = temp.link2
    temp = head
    if temp.data != 0:
        print(" " + str(temp.data) + "(x^" + str(temp.pow1) + " y^" + str(temp.pow2) + ")", end = "")
    temp = temp.link2
    while temp is not None:
        if temp.data != 0:
            print(" + " + str(temp.data) + "(x^" + str(temp.pow1) + " y^" + str(temp.pow2) + ")", end = "")
        temp = temp.link2
    print()
     
#Function to calculate partial
# derivative w.r.t. XY
def derivation_with_x_y(head):
    print("Partial derivatives w.r.t. xy: ", end = "")
    temp = head
    while temp is not None:
        if temp.pow1 != 0 and temp.pow2 != 0:
            temp.data = (temp.data) * (temp.pow1) * (temp.pow2)
            temp.pow1 = temp.pow1 - 1
            temp.pow2 = temp.pow2 - 1
        else:
            temp.data = 0
            temp.pow1 = 0
            temp.pow2 = 0
        temp = temp.link2
    temp = head
    if temp.data != 0:
        print(" " + str(temp.data) + "(x^" + str(temp.pow1) + " y^" + str(temp.pow2) + ")", end = "")
    temp = temp.link2
    while temp is not None:
        if temp.data != 0:
            print(" + " + str(temp.data) + "(x^" + str(temp.pow1) + " y^" + str(temp.pow2) + ")", end = "")
        temp = temp.link2
    print()
     
# Driver Code
if __name__ == "__main__":
   
  #Creating doubly-linked list
    head = None
    head = input_equation(head, 2,3,4)
    head = input_equation(head, 3,5,7)
    head = input_equation(head, 1,2,6)
     
    #Function Call
    derivation_with_x(head)
    derivation_with_y(head)
    derivation_with_x_y(head)
 
# This code is contributed by lokeshpotta20.


C#




using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
 
// C# code
// Structure of a node
class Node {
 
  public int data;
  public int pow1;
  public int pow2;
  public Node link1;
  public Node link2;
 
  public Node(int d,int p1,int p2) {
    data = d;
    pow1 = p1;
    pow2 = p2;
    link1 = null;
    link2 = null;
  }
}
 
 
class HelloWorld {
 
 
  // Function to generate Doubly Linked
  // List from given parameters
  public static Node input_equation(Node head,int d,int p1,int p2) {
    Node temp = head;
    // If list is empty
    if (head == null) {
 
      // Set it as the head
      // of the linked list
      Node ptr = new Node(d,p1,p2);
      head = ptr;
      //If list is not empty
    } else {
      // Temporarily store
      // address of the head node
      temp = head;
      while (temp.link2 != null) {
        temp = temp.link2;
      }
      Node ptr = new Node(d,p1,p2);
      // Connect the nodes
      ptr.link1 = temp;
      temp.link2 = ptr;
    }
    return head;
  }
 
  // Function to calculate partial derivative w.r.t. X
  public static void derivation_with_x(Node head) {
    string tem = "Partial derivatives w.r.t. x: ";
    Node temp = head;
    while (temp != null) {
      if (temp.pow1 != 0) {
        temp.data = (temp.data) * (temp.pow1);
        temp.pow1 = temp.pow1 - 1;
      } else {
        temp.data = 0;
        temp.pow1 = 0;
        temp.pow2 = 0;
      }
      temp = temp.link2;
    }
    temp = head;
    if (temp.data != 0) {
      tem = tem + " " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
    }
    temp = temp.link2;
    while (temp != null) {
      if (temp.data != 0) {
        tem = tem +" + " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
      }
      temp = temp.link2;
    }
    Console.WriteLine(tem);
  }
 
  // Function to calculate partial
  // derivative w.r.t. Y
  public static void derivation_with_y(Node head) {
    string tem = "Partial derivatives w.r.t. y: ";
    Node temp = head;
    while (temp != null) {
      if (temp.pow2 != 0) {
        temp.data = (temp.data) * (temp.pow2);
        temp.pow2 = temp.pow2 - 1;
      } else {
        temp.data = 0;
        temp.pow1 = 0;
        temp.pow2 = 0;
      }
      temp = temp.link2;
    }
    temp = head;
    if (temp.data != 0) {
      tem = tem + " " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
    }
    temp = temp.link2;
    while (temp != null) {
      if (temp.data != 0) {
        tem = tem + " + " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
      }
      temp = temp.link2;
    }
    Console.WriteLine(tem);
  }
 
  // Function to calculate partial
  // derivative w.r.t. XY
  public static void derivation_with_x_y(Node head) {
    string tem = "Partial derivatives w.r.t. xy: ";
    Node temp = head;
    while (temp != null) {
      if (temp.pow1 != 0 && temp.pow2 != 0) {
        temp.data = (temp.data) * (temp.pow1) * (temp.pow2);
        temp.pow1 = temp.pow1 - 1;
        temp.pow2 = temp.pow2 - 1;
      } else {
        temp.data = 0;
        temp.pow1 = 0;
        temp.pow2 = 0;
      }
      temp = temp.link2;
    }
    temp = head;
    if (temp.data != 0) {
      tem = tem + " " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
    }
    temp = temp.link2;
    while (temp != null) {
      if (temp.data != 0) {
        tem = tem + " + " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
      }
      temp = temp.link2;
    }
    Console.WriteLine(tem);
  }
 
  static void Main() {
    // Creating doubly-linked list
    Node head = null;
    head = input_equation(head, 2,3,4);
    head = input_equation(head, 3,5,7);
    head = input_equation(head, 1,2,6);
 
    //Function Call
    derivation_with_x(head);
    derivation_with_y(head);
    derivation_with_x_y(head);
  }
}
 
// The code is contributed by Nidhi goel.


Javascript




// Javascript code
// Structure of a node
class Node {
    constructor(data, p1, p2) {
        this.data = data;
        this.pow1 = p1;
        this.pow2 = p2;
        this.link1 = null;
        this.link2 = null;
    }
}
 
// Function to generate Doubly Linked
// List from given parameters
function input_equation(head, d, p1, p2) {
    let temp = head;
    // If list is empty
    if (head == null) {
       
      // Set it as the head
       // of the linked list
        let ptr = new Node(d,p1,p2);
        head = ptr;
        //If list is not empty
    } else {
      // Temporarily store
      // address of the head node
        temp = head;
        while (temp.link2 != null) {
            temp = temp.link2;
        }
        let ptr = new Node(d,p1,p2);
        // Connect the nodes
        ptr.link1 = temp;
        temp.link2 = ptr;
    }
    return head;
}
 
// Function to calculate partial derivative w.r.t. X
function derivation_with_x(head) {
    tem = "Partial derivatives w.r.t. x: ";
    let temp = head;
    while (temp != null) {
        if (temp.pow1 != 0) {
            temp.data = (temp.data) * (temp.pow1);
            temp.pow1 = temp.pow1 - 1;
        } else {
            temp.data = 0;
            temp.pow1 = 0;
            temp.pow2 = 0;
        }
        temp = temp.link2;
    }
    temp = head;
    if (temp.data != 0) {
        tem = tem + " " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
    }
    temp = temp.link2;
    while (temp != null) {
        if (temp.data != 0) {
        tem = tem +" + " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
        }
        temp = temp.link2;
    }
    console.log(tem);
}
     
// Function to calculate partial
// derivative w.r.t. Y
function derivation_with_y(head) {
    tem = "Partial derivatives w.r.t. y: ";
    let temp = head;
    while (temp != null) {
        if (temp.pow2 != 0) {
            temp.data = (temp.data) * (temp.pow2);
            temp.pow2 = temp.pow2 - 1;
        } else {
            temp.data = 0;
            temp.pow1 = 0;
            temp.pow2 = 0;
        }
        temp = temp.link2;
    }
    temp = head;
    if (temp.data != 0) {
        tem = tem + " " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
    }
    temp = temp.link2;
    while (temp != null) {
        if (temp.data != 0) {
            tem = tem + " + " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
        }
        temp = temp.link2;
    }
    console.log(tem);
}
     
// Function to calculate partial
// derivative w.r.t. XY
function derivation_with_x_y(head) {
    tem = "Partial derivatives w.r.t. xy: ";
    let temp = head;
    while (temp != null) {
        if (temp.pow1 != 0 && temp.pow2 != 0) {
            temp.data = (temp.data) * (temp.pow1) * (temp.pow2);
            temp.pow1 = temp.pow1 - 1;
            temp.pow2 = temp.pow2 - 1;
        } else {
            temp.data = 0;
            temp.pow1 = 0;
            temp.pow2 = 0;
        }
        temp = temp.link2;
    }
    temp = head;
    if (temp.data != 0) {
        tem = tem + " " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
    }
    temp = temp.link2;
    while (temp != null) {
        if (temp.data != 0) {
            tem = tem + " + " + temp.data + "(x^" + temp.pow1 + " y^" + temp.pow2 + ")";
        }
        temp = temp.link2;
    }
    console.log(tem);
}
     
// Driver Code
function main() {
   
  // Creating doubly-linked list
    let head = null;
    head = input_equation(head, 2,3,4);
    head = input_equation(head, 3,5,7);
    head = input_equation(head, 1,2,6);
     
    //Function Call
    derivation_with_x(head);
    derivation_with_y(head);
    derivation_with_x_y(head);
}
 
main();


Output: 

Partial derivatives w.r.t. x:  6(x^2 y^4) + 15(x^4 y^7) + 2(x^1 y^6)
Partial derivatives w.r.t. y:  24(x^2 y^3) + 105(x^4 y^6) + 12(x^1 y^5)
Partial derivatives w.r.t. x and y:  144(x^1 y^2) + 2520(x^3 y^5) + 60(x^0 y^4)

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments