Friday, December 27, 2024
Google search engine
HomeLanguagesPandas Series.fillna() Method

Pandas Series.fillna() Method

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series fillna() Syntax

Pandas Series.fillna() function is used to fill Pandas NA/NaN values using the specified method.

Syntax: Series.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) 

Parameter : 

  • value : Value to use to fill holes 
  • method : Method to use for filling holes in reindexed Series pad / ffill 
  • axis : {0 or ‘index’} 
  • inplace : If True, fill in place. 
  • limit : If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill 
  • downcast : dict, default is None

Returns : filled : Series

Pandas DataFrame fillna() Examples

Example 1: Use Series.fillna() function to fill out the missing values in the given series object. Use a dictionary to pass the values to be filled corresponding to the different index labels in the series object. 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the Series
sr = pd.Series(['New York', 'Chicago', 'Toronto', None, 'Rio'])
 
# Create the Index
sr.index = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5']
 
# set the index
sr.index = index_
 
# Print the series
print(sr)


Output : 

Pandas DataFrame fillna() Method

 

Now we will use Series.fillna() function to fill out the missing values in the given series object. 

Python3




# fill the values using dictionary
result = sr.fillna(value={'City 4': 'Lisbon',
                          'City 1': 'Dublin'})
 
# Print the result
print(result)


Output : 

Pandas DataFrame fillna() Method

 

As we can see in the output, the Series.fillna() function has successfully filled out the missing values in the given series object.   

Example 2: Use Series.fillna() function to fill out the missing values in the given series object using forward fill (ffill) method. 

Python3




# importing pandas as pd
import pandas as pd
 
# Creating the Series
sr = pd.Series([100, None, None, 18, 65,
                None, 32, 10, 5, 24, None])
 
# Create the Index
index_ = pd.date_range('2010-10-09',
                       periods = 11, freq ='M')
 
# set the index
sr.index = index_
 
# Print the series
print(sr)


Output : 

Pandas DataFrame fillna() Method

 

 Now we will use Series.fillna() function to fill out the missing values in the given series object. We will use forward fill method to fill out the missing values. 

Python3




# fill the values using forward fill method
result = sr.fillna(method = 'ffill')
 
# Print the result
print(result)


Output : 

Pandas DataFrame fillna() Method

 

 As we can see in the output, the Series.fillna() function has successfully filled out the missing values in the given series object.

RELATED ARTICLES

Most Popular

Recent Comments