Saturday, December 28, 2024
Google search engine
HomeLanguagesPandas – Merge two dataframes with different columns

Pandas – Merge two dataframes with different columns

Pandas support three kinds of data structures. They are Series, Data Frame, and Panel. A Data frame is a two-dimensional data structure, Here data is stored in a tabular format which is in rows and columns. We can create a data frame in many ways. 

Here we are creating a data frame using a list data structure in python.

Python3




# import required module
import pandas
  
# assign data
l=["vignan","it","sravan","subbarao"]
  
# create data frame
df = pandas.DataFrame(l)
  
# display dataframe
df


Output:

Here in the above example, we created a data frame. Let’s merge the two data frames with different columns. It is possible to join the different columns is using concat() method.

Syntax: pandas.concat(objs: Union[Iterable[‘DataFrame’], Mapping[Label, ‘DataFrame’]], axis=’0′, join: str = “‘outer’”)

  • DataFrame: It is dataframe name.
  • Mapping: It refers to map the index and dataframe columns
  • axis: 0 refers to the row axis and1 refers the column axis.
  • join: Type of join.

Note: If the data frame column is matched. Then empty values are replaced by NaN values.

Steps by step Approach:

  • Open jupyter notebook
  • Import necessary modules
  • Create a data frame
  • Perform operations
  • Analyze the results.

Below are some examples based on the above approach:

Example 1

In this example, we are going to concatenate the marks of students based on colleges.

Python3




# importing pandas module
import pandas as pd
  
  
# dictionary with list object in 
# values ie college details
details = {
    'Name': ['Sravan', 'Sai', 'Mohan', 'Ishitha'],
    'College': ['Vignan', 'Vignan', 'Vignan', 'Vignan'],
    'Physics': [99, 76, 71, 93],
    'Chemistry': [97, 67, 65, 89],
    'Data Science': [93, 65, 65, 85]
}
  
  
# converting to dataframe using DataFrame()
df = pd.DataFrame(details)
  
  
# print data frame
df


Output:

Python3




# creating another data
details1 = {
    'Name': ['Harsha', 'Saiteja', 'abhilash', 'harini'],
    'College': ['vvit', 'vvit', 'vvit', 'vvit'],
    'Physics': [69, 76, 51, 43],
    'Chemistry': [67, 67, 55, 89],
    'Maths': [73, 65, 61, 85]
}
  
# create dataframe
df1 = pd.DataFrame(details1)
  
  
# display dataframe
df1


Output:

Python3




# concat dataframes
pd.concat([df, df1], axis=0, ignore_index=True)


Python3




# concat when axis = 1
pd.concat([df, df1], axis=1, ignore_index=True)


Example 2:

Storing marks and subject details

Python3




# Import pandas library
import pandas as pd
  
# initialize list of lists
data = [['sravan', 98.00], ['jyothika', 90.00], ['vijay', 79.34]]
  
# Create the pandas DataFrame
df = pd.DataFrame(data, columns=['Name', 'Marks'])
  
# print dataframe.
df


Output:

Python3




# initialize list of lists
data1 = [['Haseen', 88.00, 5], ['ramya', 54.00, 5], ['haritha', 56.34, 4]]
  
# Create the pandas DataFrame
df1 = pd.DataFrame(
    data1, columns=['Name', 'Marks', 'Total subjects registered'])
  
# print dataframe.
df1


Output:

Python3




# concatenating data frame
pd.concat([df, df1], axis=0, ignore_index=True)


Output:

RELATED ARTICLES

Most Popular

Recent Comments