Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas. Pandas DataFrame.dtypes attribute return the dtypes in the DataFrame. It returns a Series with the data type of each column.
Pandas DataFrame.dtypes Syntax
Syntax: DataFrame.dtypes
Parameter : None
Returns : dtype of each column
Example 1: Use DataFrame.dtypes attribute to find out the data type (dtype) of each column in the given Dataframe.
Python3
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ 'Weight' : [ 45 , 88 , 56 , 15 , 71 ], 'Name' : [ 'Sam' , 'Andrea' , 'Alex' , 'Robin' , 'Kia' ], 'Age' : [ 14 , 25 , 55 , 8 , 21 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.dtypes attribute to find out the data type of each column in the given Dataframe.
Python3
# return the dtype of each column result = df.dtypes # Print the result print (result) |
Output:
As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given Dataframe.
Example 2: Use DataFrame.dtypes attribute to find out the data type (dtype) of each column in the given dataframe.
Python3
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({& quot A": [ 12 , 4 , 5 , None , 1 ], & quot B" : [ 7 , 2 , 54 , 3 , None ], & quot C" : [ 20 , 16 , 11 , 3 , 8 ], & quot D" : [ 14 , 3 , None , 2 , 6 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output:
Now we will use DataFrame.dtypes attribute to find out the data type of each column in the given dataframe.
Python3
# return the dtype of each column result = df.dtypes # Print the result print (result) |
Output:
As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given dataframe.