Friday, December 27, 2024
Google search engine
HomeLanguagesPandas DataFrame.dtypes

Pandas DataFrame.dtypes

Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas. Pandas DataFrame.dtypes attribute return the dtypes in the DataFrame. It returns a Series with the data type of each column.

Pandas DataFrame.dtypes Syntax

Syntax: DataFrame.dtypes 

Parameter : None 

Returns : dtype of each column

Example 1: Use DataFrame.dtypes attribute to find out the data type (dtype) of each column in the given Dataframe. 

Python3




# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({'Weight': [45, 88, 56, 15, 71],
                   'Name': ['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
                   'Age': [14, 25, 55, 8, 21]})
  
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)


Output : 

 

 Now we will use DataFrame.dtypes attribute to find out the data type of each column in the given Dataframe. 

Python3




# return the dtype of each column
result = df.dtypes
  
# Print the result
print(result)


Output: 

As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given Dataframe.   

 

Example 2: Use DataFrame.dtypes attribute to find out the data type (dtype) of each column in the given dataframe. 

Python3




# importing pandas as pd
import pandas as pd
  
# Creating the DataFrame
df = pd.DataFrame({& quot
                    A&quot: [12, 4, 5, None, 1],
                    & quot
                    B&quot
                    : [7, 2, 54, 3, None],
                    & quot
                    C&quot
                    : [20, 16, 11, 3, 8],
                    & quot
                    D&quot
                    : [14, 3, None, 2, 6]})
  
# Create the index
index_ = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']
  
# Set the index
df.index = index_
  
# Print the DataFrame
print(df)


Output:

 

 Now we will use DataFrame.dtypes attribute to find out the data type of each column in the given dataframe. 

Python3




# return the dtype of each column
result = df.dtypes
  
# Print the result
print(result)


Output:

As we can see in the output, the DataFrame.dtypes attribute has successfully returned the data types of each column in the given dataframe.

 

RELATED ARTICLES

Most Popular

Recent Comments