Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPalindromic divisors of a number

Palindromic divisors of a number

Prerequisite: Find all divisors of a natural number 
Given a number N. The task is to find all the palindromic divisors of N

Examples: 

Input: N = 66 
Output: 1 2 3 6 11 22 33 66

Input: N = 808 
Output: 1 2 4 8 101 202 404 808
 

Approach:  

  • Find all the divisors of N using approach discussed in this article.
  • For each divisors D, check whether D is palindromic or not.
  • Repeat the above step for all the divisors.

Below is the implementation of the above approach:  

C++14




// C++ program to find all the palindromic
// divisors of a number
#include "bits/stdc++.h"
using namespace std;
 
// Function to check is num is palindromic
// or not
bool isPalindrome(int n)
{
    // Convert n to string str
    string str = to_string(n);
 
    // Starting and ending index of
    // string str
    int s = 0, e = str.length() - 1;
    while (s < e) {
 
        // If char at s and e are
        // not equals then return
        // false
        if (str[s] != str[e]) {
            return false;
        }
        s++;
        e--;
    }
    return true;
}
 
// Function to find  palindromic divisors
void palindromicDivisors(int n)
{
    // To store the palindromic divisors of
    // number n
    vector<int> PalindromDivisors;
 
    for (int i = 1; i <= sqrt(n); i++) {
 
        // If n is divisible by i
        if (n % i == 0) {
 
            // Check if number is a perfect square
            if (n / i == i) {
 
                // Check divisor is palindromic,
                // then store it
                if (isPalindrome(i)) {
                    PalindromDivisors.push_back(i);
                }
            }
            else {
 
                // Check if divisors are palindrome
                if (isPalindrome(i)) {
                    PalindromDivisors.push_back(i);
                }
 
                // Check if n / divisors is palindromic
                // or not
                if (isPalindrome(n / i)) {
                    PalindromDivisors.push_back(n / i);
                }
            }
        }
    }
 
    // Print all palindromic divisors in sorted order
    sort(PalindromDivisors.begin(),
         PalindromDivisors.end());
 
    for (int i = 0; i < PalindromDivisors.size();
         i++) {
        cout << PalindromDivisors[i] << " ";
    }
}
 
// Driver code
int main()
{
    int n = 66;
 
    // Function call to find all palindromic
    // divisors
    palindromicDivisors(n);
}


Java




// Java program to find all the palindromic
// divisors of a number
import java.util.*;
 
class GFG
{
 
// Function to check is num is palindromic
// or not
static boolean isPalindrome(int n)
{
    // Convert n to String str
    String str = String.valueOf(n);
 
    // Starting and ending index of
    // String str
    int s = 0, e = str.length() - 1;
    while (s < e) {
 
        // If char at s and e are
        // not equals then return
        // false
        if (str.charAt(s) != str.charAt(e)) {
            return false;
        }
        s++;
        e--;
    }
    return true;
}
 
// Function to find palindromic divisors
static void palindromicDivisors(int n)
{
    // To store the palindromic divisors of
    // number n
    Vector<Integer> PalindromDivisors = new Vector<Integer>();
 
    for (int i = 1; i <= Math.sqrt(n); i++) {
 
        // If n is divisible by i
        if (n % i == 0) {
 
            // Check if number is a perfect square
            if (n / i == i) {
 
                // Check divisor is palindromic,
                // then store it
                if (isPalindrome(i)) {
                    PalindromDivisors.add(i);
                }
            }
            else {
 
                // Check if divisors are palindrome
                if (isPalindrome(i)) {
                    PalindromDivisors.add(i);
                }
 
                // Check if n / divisors is palindromic
                // or not
                if (isPalindrome(n / i)) {
                    PalindromDivisors.add(n / i);
                }
            }
        }
    }
 
    // Print all palindromic divisors in sorted order
    Collections.sort(PalindromDivisors);
 
    for (int i = 0; i < PalindromDivisors.size();
        i++) {
        System.out.print(PalindromDivisors.get(i)+ " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 66;
 
    // Function call to find all palindromic
    // divisors
    palindromicDivisors(n);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to find all the palindromic
# divisors of a number
from math import sqrt;
 
# Function to check is num is palindromic
# or not
def isPalindrome(n) :
 
    # Convert n to string str
    string = str(n);
 
    # Starting and ending index of
    # string str
    s = 0; e = len(string) - 1;
    while (s < e) :
 
        # If char at s and e are
        # not equals then return
        # false
        if (string[s] != string[e]) :
            return False;
         
        s += 1;
        e -= 1;
     
    return True;
 
# Function to find palindromic divisors
def palindromicDivisors(n) :
 
    # To store the palindromic divisors of
    # number n
    PalindromDivisors = [];
 
    for i in range(1, int(sqrt(n))) :
 
        # If n is divisible by i
        if (n % i == 0) :
 
            # Check if number is a perfect square
            if (n // i == i) :
 
                # Check divisor is palindromic,
                # then store it
                if (isPalindrome(i)) :
                    PalindromDivisors.append(i);
             
            else :
 
                # Check if divisors are palindrome
                if (isPalindrome(i)) :
                    PalindromDivisors.append(i);
 
                # Check if n / divisors is palindromic
                # or not
                if (isPalindrome(n // i)) :
                    PalindromDivisors.append(n // i);
 
    # Print all palindromic divisors in sorted order
    PalindromDivisors.sort();
     
    for i in range(len( PalindromDivisors)) :
        print(PalindromDivisors[i] ,end=" ");
 
# Driver code
if __name__ == "__main__" :
 
    n = 66;
 
    # Function call to find all palindromic
    # divisors
    palindromicDivisors(n);
 
# This code is contributed by AnkitRai01


C#




// C# program to find all the palindromic
// divisors of a number
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to check is num is palindromic
// or not
static bool isPalindrome(int n)
{
    // Convert n to String str
    String str = String.Join("",n);
 
    // Starting and ending index of
    // String str
    int s = 0, e = str.Length - 1;
    while (s < e)
    {
 
        // If char at s and e are
        // not equals then return
        // false
        if (str[s] != str[e])
        {
            return false;
        }
        s++;
        e--;
    }
    return true;
}
 
// Function to find palindromic divisors
static void palindromicDivisors(int n)
{
    // To store the palindromic divisors of
    // number n
    List<int> PalindromDivisors = new List<int>();
 
    for (int i = 1; i <= Math.Sqrt(n); i++)
    {
 
        // If n is divisible by i
        if (n % i == 0)
        {
 
            // Check if number is a perfect square
            if (n / i == i)
            {
 
                // Check divisor is palindromic,
                // then store it
                if (isPalindrome(i))
                {
                    PalindromDivisors.Add(i);
                }
            }
            else
            {
 
                // Check if divisors are palindrome
                if (isPalindrome(i))
                {
                    PalindromDivisors.Add(i);
                }
 
                // Check if n / divisors is palindromic
                // or not
                if (isPalindrome(n / i))
                {
                    PalindromDivisors.Add(n / i);
                }
            }
        }
    }
 
    // Print all palindromic divisors in sorted order
    PalindromDivisors.Sort();
 
    for (int i = 0; i < PalindromDivisors.Count;
        i++)
    {
        Console.Write(PalindromDivisors[i]+ " ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 66;
 
    // Function call to find all palindromic
    // divisors
    palindromicDivisors(n);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript program to find all the palindromic
// divisors of a number
 
// Function to check is num is palindromic
// or not
function isPalindrome(n)
{
     
    // Convert n to string str
    var str = (n.toString());
 
    // Starting and ending index of
    // string str
    var s = 0, e = str.length - 1;
     
    while (s < e)
    {
         
        // If char at s and e are
        // not equals then return
        // false
        if (str[s] != str[e])
        {
            return false;
        }
        s++;
        e--;
    }
    return true;
}
 
// Function to find  palindromic divisors
function palindromicDivisors(n)
{
     
    // To store the palindromic divisors of
    // number n
    var PalindromDivisors = [];
 
    for(var i = 1; i <= parseInt(Math.sqrt(n)); i++)
    {
         
        // If n is divisible by i
        if (n % i == 0)
        {
 
            // Check if number is a perfect square
            if (n / i == i)
            {
 
                // Check divisor is palindromic,
                // then store it
                if (isPalindrome(i))
                {
                    PalindromDivisors.push(i);
                }
            }
            else
            {
                 
                // Check if divisors are palindrome
                if (isPalindrome(i))
                {
                    PalindromDivisors.push(i);
                }
 
                // Check if n / divisors is palindromic
                // or not
                if (isPalindrome(n / i))
                {
                    PalindromDivisors.push(n / i);
                }
            }
        }
    }
 
    // Print all palindromic divisors in sorted order
    PalindromDivisors.sort((a, b) => a - b)
 
    for(var i = 0;
            i < PalindromDivisors.length; i++)
    {
        document.write( PalindromDivisors[i] + " ");
    }
}
 
// Driver code
var n = 66;
 
// Function call to find all palindromic
// divisors
palindromicDivisors(n);
 
// This code is contributed by rrrtnx
 
</script>


Output: 

1 2 3 6 11 22 33 66

 

Time Complexity: O(N*log N)

Auxiliary Space: O(sqrt(n))
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments