Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIPairwise Swap leaf nodes in a binary tree

Pairwise Swap leaf nodes in a binary tree

Given a binary tree, we need to write a program to swap leaf nodes in the given binary tree pairwise starting from left to right as shown below.

Tree before swapping:

Tree after swapping:

 The sequence of leaf nodes in original binary tree from left to right is (4, 6, 7, 9, 10). Now if we try to form pairs from this sequence, we will have two pairs as (4, 6), (7, 9). The last node (10) is unable to form pair with any node and thus left unswapped. 

Recommended Practice

The idea to solve this problem is to first traverse the leaf nodes of the binary tree from left to right. While traversing the leaf nodes, we maintain two pointers to keep track of first and second leaf nodes in a pair and a variable count to keep track of count of leaf nodes traversed. Now, if we observe carefully then we see that while traversing if the count of leaf nodes traversed is even, it means that we can form a pair of leaf nodes. To keep track of this pair we take two pointers firstPtr and secondPtr as mentioned above. Every time we encounter a leaf node we initialize secondPtr with this leaf node. Now if the count is odd, we initialize firstPtr with secondPtr otherwise we simply swap these two nodes. 

Below is the C++ implementation of above idea: 

CPP




/* C++ program to pairwise swap
leaf nodes from left to right */
#include <bits/stdc++.h>
using namespace std;
  
// A Binary Tree Node
struct Node
{
    int data;
    struct Node *left, *right;
};
  
// function to swap two Node
void Swap(Node **a, Node **b)
{
    Node * temp = *a;
    *a = *b;
    *b = temp;
}
  
// two pointers to keep track of
// first and second nodes in a pair
Node **firstPtr;
Node **secondPtr;
  
// function to pairwise swap leaf
// nodes from left to right
void pairwiseSwap(Node **root, int &count)
{
    // if node is null, return
    if (!(*root))
        return;
  
    // if node is leaf node, increment count
    if(!(*root)->left&&!(*root)->right)
    {
        // initialize second pointer
        // by current node
        secondPtr = root;
  
        // increment count
        count++;
  
        // if count is even, swap first
        // and second pointers
        if (count%2 == 0)
            Swap(firstPtr, secondPtr);
  
        else
  
            // if count is odd, initialize
            // first pointer by second pointer
            firstPtr = secondPtr;
    }
  
    // if left child exists, check for leaf
    // recursively
    if ((*root)->left)
        pairwiseSwap(&(*root)->left, count);
  
    // if right child exists, check for leaf
    // recursively
    if ((*root)->right)
        pairwiseSwap(&(*root)->right, count);
  
}
  
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node *temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
  
// function to print inorder traversal
// of binary tree
void printInorder(Node* node)
{
    if (node == NULL)
        return;
  
    /* first recur on left child */
    printInorder(node->left);
  
    /* then print the data of node */
    printf("%d ", node->data);
  
    /* now recur on right child */
    printInorder(node->right);
}
  
// Driver program to test above functions
int main()
{
    // Let us create binary tree shown in
    // above diagram
    Node *root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->right->left = newNode(5);
    root->right->right = newNode(8);
    root->right->left->left = newNode(6);
    root->right->left->right = newNode(7);
    root->right->right->left = newNode(9);
    root->right->right->right = newNode(10);
  
    // print inorder traversal before swapping
    cout << "Inorder traversal before swap:\n";
    printInorder(root);
    cout << "\n";
  
    // variable to keep track
    // of leafs traversed
    int c = 0;
  
    // Pairwise swap of leaf nodes
    pairwiseSwap(&root, c);
  
    // print inorder traversal after swapping
    cout << "Inorder traversal after swap:\n";
    printInorder(root);
    cout << "\n";
  
    return 0;
}


Java




/* Java program to pairwise swap
leaf nodes from left to right */
// A binary Tree Node
class Node {
    int data;
    Node left, right;
    Node(int data)
    {
        this.data = data;
        left = null;
        right = null;
    }
}
class Main {
    // two pointers to keep track of
    // first and second nodes in a pair
    static Node firstPtr = null;
    static Node secondPtr = null;
    // variable to keep track
    // of leafs traversed
    static int count = 0;
    // function to pairwise swap leaf
    // nodes from left to right
    public static void pairWiseSwap(Node root)
    {
        // if node is null, return
        if (root == null)
            return;
        // if node is leaf node, increment count
        if (root.left == null && root.right == null) {
            // initialize second pointer
            // by current node
            secondPtr = root;
            // increment count
            count++;
            // if count is even, swap first
            // and second pointers
            if (count % 2 == 0) {
                int temp = firstPtr.data;
                firstPtr.data = secondPtr.data;
                secondPtr.data = temp;
            }
            // if count is odd, initialize
            // first pointer by second pointer
            else
                firstPtr = secondPtr;
        }
        // if left child exists, check for leaf
        // recursively
        if (root.left != null)
            pairWiseSwap(root.left);
        // if right child exists, check for leaf
        // recursively
        if (root.right != null)
            pairWiseSwap(root.right);
    }
    // Utility function to create a new tree node
    public static Node newNode(int data)
    {
        return new Node(data);
    }
    // function to print inorder traversal
    // of binary tree
    public static void printInorder(Node node)
    {
        if (node == null)
            return;
        /* first recur on left child */
        printInorder(node.left);
        /* then print the data of node */
        System.out.print(node.data + " ");
        /* now recur on right child */
        printInorder(node.right);
    }
    // Driver program to test above functions
    public static void main(String[] args)
    {
        // Let us create binary tree shown in
        // above diagram
        Node root = newNode(1);
        root.left = newNode(2);
        root.right = newNode(3);
        root.left.left = newNode(4);
        root.right.left = newNode(5);
        root.right.right = newNode(8);
        root.right.left.left = newNode(6);
        root.right.left.right = newNode(7);
        root.right.right.left = newNode(9);
        root.right.right.right = newNode(10);
        // print inorder traversal before swapping
        System.out.print(
            "Inorder traversal before swap : ");
        printInorder(root);
        pairWiseSwap(root);
        // print inorder traversal after swapping
        System.out.println();
        System.out.print("Inorder traversal after swap: ");
        printInorder(root);
    }
}


Python3




# Python program to pairwise swap
# leaf nodes from left to right
# a binary tree node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
      
# function to swap two node
def Swap(a, b):
    temp = a.data
    a.data = b.data
    b.data = temp
  
# two pointers to keep track of
# first and second nodes in pair
firstPtr = None
secondPtr = None
  
# functiont o pairwise swap leaf
# nodes from left to right
count = 0
def pairwiseSwap(root):
    # if node is null, return
    if(root is None):
        return
      
    # if node is leaf node, incrrement count
    if(root.left is None and root.right is None):
        global count, firstPtr, secondPtr
        # initialize second pointer by current node
        secondPtr = root
          
        # increment count
        count += 1
          
        # if count is even, swap first
        # and second pointers
        if(count % 2 == 0):
            Swap(firstPtr, secondPtr)
        else:
            # if count is odd, initialize
            # first pointer by second pointer
            firstPtr = secondPtr
      
    # if left child exists, check for leaf
    # recursively
    if(root.left is not None):
        pairwiseSwap(root.left)
      
    # if right child exists, check for leaf 
    # recursively
    if(root.right is not None):
        pairwiseSwap(root.right)
  
  
# utility function to create a new node
def newNode(data):
    return Node(data)
  
  
# function to print inorder traversal of binary tree
def printInorder(node):
    if(node is None):
        return
      
    # first recur on left child
    printInorder(node.left)
    # then print the data of node
    print(node.data, end=" ")
    # now recur on right child
    printInorder(node.right)
  
  
# driver program to test above function
# let us create a binary tree shownin above diagram
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.right.left = newNode(5)
root.right.right = newNode(8)
root.right.left.left = newNode(6)
root.right.left.right = newNode(7)
root.right.right.left = newNode(9)
root.right.right.right = newNode(10)
  
# print Inorder traversal before swapping
print("Inorder traversal before swap : ")
printInorder(root)
  
# variable to keep track of leafs traversed
  
# pairwise swap of leaf nodes
pairwiseSwap(root)
  
# print Inorder traversal after swapping
print("\nInorder traversal after swap : ")
printInorder(root)


C#




// C# Program to pairwise swap
// leaf nodes from left to right
// in a binary tree node
using System;
  
public class Node{
    public int data;
    public Node left, right;
      
    public Node(int item){
        data = item;
        left = right = null;
    }
}
  
public class BinaryTree{
    static Node firstPtr;
    static Node secondPtr;
      
    // function to swap two node
    static void Swap(Node a, Node b){
        int temp = a.data;
        a.data = b.data;
        b.data = temp;
    }
      
    // function to pairwise swap leaf
    // nodes from left to right
    static int count = 0;
    static void pairwiseSwap(Node root){
        // if node is null, return
        if(root == null) return;
          
        // if node is leaf node, increment count
        if(root.left == null && root.right == null){
            // initialize second pointer by current node
            secondPtr = root;
              
            // increment count
            count += 1;
              
            // if count is even, swap first
            // and second pointers
            if(count % 2 == 0){
                Swap(firstPtr, secondPtr);
            }else{
                // if count is odd, initialize 
                // first pointer by second pointer
                firstPtr = secondPtr;
            }
        }
        // if left child exists, check for leaf
        // recursively
        if(root.left != null){
            pairwiseSwap(root.left);
        }
          
        // if right child exists, check for leaf
        // recursively
        if(root.right != null){
            pairwiseSwap(root.right);
        }
    }
      
    // utility function to create a new tree node
    static Node newNode(int data){
        return new Node(data);
    }
      
    // function to print inorder traversal of binary tree
    static void printInorder(Node node){
        if(node == null) return;
          
        // first recur on left child
        printInorder(node.left);
          
        // then print the data of node
        Console.Write(node.data + " ");
          
        // now recur on right child
        printInorder(node.right);
    }
      
    // driver program to test above function
    static public void Main (){
        Node root = newNode(1);
        root.left = newNode(2);
        root.right = newNode(3);
        root.left.left = newNode(4);
        root.right.left = newNode(5);
        root.right.right = newNode(8);
        root.right.left.left = newNode(6);
        root.right.left.right = newNode(7);
        root.right.right.left = newNode(9);
        root.right.right.right = newNode(10);
          
        // print inorder traversal before swapping
        Console.WriteLine("Inorder Traversal before swap : ");
        printInorder(root);
        Console.WriteLine();
          
        // variable to keep track of leafs traversal
          
        // pairwise swap of leaf nodes
        pairwiseSwap(root);
          
        // print inorder traversal after swapping
        Console.WriteLine("Inorder traversal after swap : ");
        printInorder(root);
    }
}
  
// this code is contributed by Kirti Agarwal(kirtiagarwal23121999)


Javascript




// JavaScript program to pairwise swap leaf
// nodes from left to right
  
// a binary tree node
class Node{
    constructor(data){
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
  
// function to swap two node
function Swap(a, b){
    let temp = a.data;
    a.data = b.data;
    b.data = temp;
}
  
// two pointers to keep track of
// first and second nodes in pair
let firstPrt;
let secondPtr;
  
// function to pairwise swap leaf
// nodes from left to right
let count = 0;
function pairwiseSwap(root)
{
  
    // if node is null, return
    if(root == null) return;
      
    // if node is leaf node, increment count
    if(root.left == null && root.right == null){
        // initialize second pointer by current node
        secondPtr = root;
          
        // increment count
        count++;
          
        // if count is even, swap first
        // and second pointers
        if(count % 2 == 0){
            Swap(firstPtr, secondPtr);
        }
        else{
            // if count is odd, initialize
            // first pointer by second pointer
            firstPtr = secondPtr;
        }
    }
    // if left child exists, check for leaf
    // recursively
    if(root.left != null){
        pairwiseSwap(root.left);
    }
      
    // if right child exists, check for leaf
    // recursively
    if(root.right != null){
        pairwiseSwap(root.right);
    }
}
  
// utility function to create a new tree node
function newNode(data){
    return new Node(data);
}
  
// function to print inorder traversal of bianry tree
function printInorder(node){
    if(node == null)
        return;
      
    // first recur on left child
    printInorder(node.left);
      
    // then print the data of node
    console.log(node.data + " ");
      
    // now recur on right child
    printInorder(node.right);
}
  
// driver program to test above functions
// let us create binary tree shown in above diagram
let root = newNode(1);
root.left = newNode(2);
root.right = newNode(3);
root.left.left = newNode(4);
root.right.left = newNode(5);
root.right.right = newNode(8);
root.right.left.left = newNode(6);
root.right.left.right = newNode(7);
root.right.right.left = newNode(9);
root.right.right.right = newNode(10);
  
// print  inorder traversal before swapping
console.log("Inorder traversal before swap: ");
printInorder(root);
  
// variable to keep track of leafs traversed
  
// pairwise swap of leaf nodes
pairwiseSwap(root);
  
// print inorder traversal after swapping
console.log("Inorder traversal after swap: ");
printInorder(root);
  
// this code is contributed by Yash Agarwal(yashagarwal2852002)


Output

Inorder traversal before swap:
4 2 1 6 5 7 3 9 8 10 
Inorder traversal after swap:
6 2 1 4 5 9 3 7 8 10 

Time Complexity: O(n), where n is the number of nodes in the binary tree. 
Auxiliary Space: O(n) 

This article is contributed by Harsh Agarwal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments