Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPairs with GCD equal to one in the given range

Pairs with GCD equal to one in the given range

Given a range i.e. L and R, the task is to find if we can form pairs such that GCD of every pair is 1. Every number in the range L-R should be involved exactly in one pair.
Examples: 
 

Input: L = 1, R = 8
Output: Yes
{2, 7}, {4, 1}, {3, 8}, {6, 5}
All pairs have GCD as 1.
Input: L = 2, R = 4
Output: No

 

Approach: Since every number in the range(L, R) must be included exactly once in every pair. Hence if L-R is an even number, then it is not possible. If L-R is an odd number, then print all the adjacent pairs since adjacent pairs will always have GCD as 1. 
Below is the implementation of the above approach: 
 

C++




// C++ program to print all pairs
#include <bits/stdc++.h>
using namespace std;
 
// Function to print all pairs
bool checkPairs(int l, int r)
{
    // check if even
    if ((l - r) % 2 == 0)
        return false;
 
    /* We can print all adjacent pairs
      for (int i = l; i < r; i += 2) {
          cout << "{" << i << ", " << i + 1 << "}, ";
      } */
      
    return true;
}
 
// Driver Code
int main()
{
    int l = 1, r = 8;
    if (checkPairs(l, r))
       cout << "Yes";
    else
       cout << "No";
    return 0;
}


Java




// Java program to print all pairs
class GFG
{
// Function to print all pairs
static boolean checkPairs(int l, int r)
{
    // check if even
    if ((l - r) % 2 == 0)
        return false;
 
    /* We can print all adjacent pairs
    for (int i = l; i < r; i += 2)
    {
        System.out.print("{"+i+", "+i + 1+"}, ");
    } */
     
    return true;
}
 
// Driver Code
public static void main(String[] args)
{
    int l = 1, r = 8;
    if (checkPairs(l, r))
    System.out.println("Yes");
    else
    System.out.println("No");
}
}
 
// This code is contributed by mits


Python 3




# Python 3 program to print all pairs
 
# Function to print all pairs
def checkPairs(l, r) :
 
    # check if even
    if (l - r) % 2 == 0 :
        return False
 
    """ we can print all adjacent pairs
    for i in range(l,r,2) :
        print("{",i,",",i + 1, "},")
    """
     
    return True
 
# Driver Code
if __name__ == "__main__" :
 
    l, r = 1, 8
 
    if checkPairs(l, r) :
        print("Yes")
    else :
        print("No")
            
# This code is contributed by ANKITRAI1


C#




// C# program to print all pairs
using System;
 
class GFG
{
// Function to print all pairs
static bool checkPairs(int l, int r)
{
    // check if even
    if ((l - r) % 2 == 0)
        return false;
 
    /* We can print all adjacent pairs
    for (int i = l; i < r; i += 2)
    {
        System.out.print("{"+i+", "+i + 1+"}, ");
    } */
     
    return true;
}
 
// Driver Code
static public void Main ()
{
    int l = 1, r = 8;
    if (checkPairs(l, r))
    Console.Write("Yes");
    else
    Console.Write("No");
}
}
 
// This code is contributed by Raj


Javascript




<script>
 
// JavaScript program to print all pairs
 
    // Function to print all pairs
    function checkPairs(l , r) {
        // check if even
        if ((l - r) % 2 == 0)
            return false;
 
        /*
         We can print all adjacent pairs
         for (i = l; i < r; i += 2) {
         document.write("{"+i+", "+i + 1+"], "); }
         */
 
        return true;
    }
 
    // Driver Code
     
        var l = 1, r = 8;
        if (checkPairs(l, r))
            document.write("Yes");
        else
            document.write("No");
 
// This code is contributed by todaysgaurav
 
</script>


PHP




<?php
// PHP program to print all pairs
 
// Function to print all pairs
function checkPairs($l, $r)
{
    // check if even
    if (($l - $r) % 2 == 0)
        return false;
 
    /* We can print all adjacent pairs
    for (int i = l; i < r; i += 2)
    {
        cout << "{" << i << ", " << i + 1 << "}, ";
    } */
     
    return true;
}
 
// Driver Code
$l = 1;
$r = 8;
if (checkPairs($l, $r))
    echo ("Yes");
else
    echo ("No");
     
// This code is contributed
// by Shivi_Aggarwal
?>


Output

Yes



Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Approach#2: Using sieve of eratosthenes

This approach uses the Sieve of Eratosthenes algorithm to generate a list of prime numbers up to the square root of the maximum number in the range. It then checks each pair of consecutive numbers in the range and determines whether they have a common factor other than 1, by iterating over the prime numbers and checking if they divide both numbers. If such a common factor exists, the function returns “No” indicating that there are no pairs with GCD equal to one. If no such common factor is found, the function returns “Yes” indicating that there exist pairs with GCD equal to one.

Algorithm

1. Generate a list of all primes up to sqrt(R).
2. Iterate over all numbers in the given range and check if they are coprime with all the primes up to sqrt(R).
3. If there exists at least one pair of coprime numbers, return “Yes”, else return “No”.

C++




#include <iostream>
#include <vector>
#include <cmath>
 
using namespace std;
 
// Function to implement the Sieve of Eratosthenes algorithm
vector<bool> sieve_of_eratosthenes(int n) {
    // Create a boolean vector to mark numbers as prime or not
    vector<bool> primes(n + 1, true);
    primes[0] = primes[1] = false;
 
    // Iterate from 2 to the square root of n
    for (int i = 2; i <= sqrt(n); i++) {
        if (primes[i]) {
            // Mark all multiples of the current prime as not prime
            for (int j = i * i; j <= n; j += i) {
                primes[j] = false;
            }
        }
    }
 
    return primes;
}
 
// Function to check if there are pairs with GCD equal to 1 in the given range [l, r]
string pairs_with_gcd_one(int l, int r) {
    // Generate a boolean vector of primes using the Sieve of Eratosthenes
    vector<bool> primes = sieve_of_eratosthenes(sqrt(r));
 
    // Iterate through numbers in the range [l, r)
    for (int i = l; i < r; i++) {
        // Iterate through prime numbers in the range [2, sqrt(r)]
        for (int j = 2; j <= sqrt(r); j++) {
            // Check if j is prime
            if (primes[j]) {
                // If i and i+1 are both divisible by j, their GCD is not 1
                if (i % j == 0 && (i + 1) % j == 0) {
                    return "No";
                }
            }
        }
    }
 
    return "Yes";
}
 
int main() {
    int l = 1;
    int r = 8;
    cout << pairs_with_gcd_one(l, r) << endl;
    return 0;
}


Java




// Java code
 
import java.io.*;
import java.util.Arrays;
 
public class GCDPairs {
 
    // Function to implement the Sieve of Eratosthenes algorithm
    public static boolean[] sieveOfEratosthenes(int n) {
        // Create a boolean array to mark numbers as prime or not
        boolean[] primes = new boolean[n + 1];
        Arrays.fill(primes, true);
        primes[0] = primes[1] = false;
 
        // Iterate from 2 to the square root of n
        for (int i = 2; i * i <= n; i++) {
            if (primes[i]) {
                // Mark all multiples of the current prime as not prime
                for (int j = i * i; j <= n; j += i) {
                    primes[j] = false;
                }
            }
        }
 
        return primes;
    }
 
    // Function to check if there are pairs with GCD equal to 1 in the given range [l, r]
    public static String pairsWithGCDOne(int l, int r) {
        // Generate a boolean array of primes using the Sieve of Eratosthenes
        boolean[] primes = sieveOfEratosthenes((int) Math.sqrt(r));
 
        // Iterate through numbers in the range [l, r)
        for (int i = l; i < r; i++) {
            // Iterate through prime numbers in the range [2, sqrt(r)]
            for (int j = 2; j <= Math.sqrt(r); j++) {
                // Check if j is prime
                if (primes[j]) {
                    // If i and i+1 are both divisible by j, their GCD is not 1
                    if (i % j == 0 && (i + 1) % j == 0) {
                        return "No";
                    }
                }
            }
        }
 
        return "Yes";
    }
 
    public static void main(String[] args) {
        int l = 1;
        int r = 8;
        System.out.println(pairsWithGCDOne(l, r));
    }
}


Python3




def sieve_of_eratosthenes(n):
    primes = [True] * (n+1)
    primes[0] = primes[1] = False
    for i in range(2, int(n**0.5)+1):
        if primes[i]:
            for j in range(i*i, n+1, i):
                primes[j] = False
    return primes
 
def pairs_with_gcd_one(l, r):
    primes = sieve_of_eratosthenes(int(r**0.5))
    for i in range(l, r):
        for j in range(2, int(r**0.5)+1):
            if primes[j]:
                if i % j == 0 and (i+1) % j == 0:
                    return "No"
    return "Yes"
 
l=1
r=8
print(pairs_with_gcd_one(l, r))


Output

Yes



Time complexity: O((r-l)*sqrt(r)), where r and l are the range boundaries, due to the nested loops over the range and the primes. 

Auxiliary Space: O(sqrt(r)), since we store the list of primes up to the square root of r.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments