In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)]
, where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']
. Record arrays allow the fields to be accessed as members of the array, using arr.a and arr.b
.
numpy.recarray.repeat()
function is used to repeat elements of record array.
Syntax :
numpy.recarray.repeat(repeats, axis=None)
Parameters:
repeats : [int or array of ints] The number of repetitions for each element.
axis : [int or None] The axis along which to repeat values. If None, the array is flattened before repeating.Return : [ndarray] Output array which has the same shape as record array, except along the given axis.
Code #1 :
# Python program explaining # numpy.recarray.repeat() method # importing numpy as geek import numpy as geek # creating input array with 2 different field in_arr = geek.array([[( 5.0 , 2 ), ( 3.0 , - 4 ), ( 6.0 , 9 )], [( 9.0 , 1 ), ( 5.0 , 4 ), ( - 12.0 , - 7 )]], dtype = [( 'a' , float ), ( 'b' , int )]) print ( "Input array : " , in_arr) # convert it to a record array, # using arr.view(np.recarray) rec_arr = in_arr.view(geek.recarray) print ( "Record array of float: " , rec_arr.a) print ( "Record array of int: " , rec_arr.b) # applying recarray.repeat methods # to float record array along axis 1 out_arr = rec_arr.a.repeat( 3 , axis = 1 ) print ( "Output repeated float array along axis 1 : " , out_arr) # applying recarray.repeat methods # to float record array along default axis out_arr = rec_arr.a.repeat( 2 ) print ( "Output repeated float array along default axis : " , out_arr) # applying recarray.repeat methods # to int record array along axis 0 out_arr = rec_arr.b.repeat( 2 , axis = 0 ) print ( "Output repeated int array along axis 0 : " , out_arr) # applying recarray.repeat methods # to int record array along default out_arr = rec_arr.b.repeat( 2 ) print ( "Output repeated int array along default axis : " , out_arr) |
Input array : [[( 5., 2) ( 3., -4) ( 6., 9)]
[( 9., 1) ( 5., 4) (-12., -7)]]
Record array of float: [[ 5. 3. 6.]
[ 9. 5. -12.]]
Record array of int: [[ 2 -4 9]
[ 1 4 -7]]Output repeated float array along axis 1 : [[ 5. 5. 5. 3. 3. 3. 6. 6. 6.]
[ 9. 9. 9. 5. 5. 5. -12. -12. -12.]]
Output repeated float array along default axis : [ 5. 5. 3. 3. 6. 6. 9. 9. 5. 5. -12. -12.]
Output repeated int array along axis 0 : [[ 2 -4 9]
[ 2 -4 9]
[ 1 4 -7]
[ 1 4 -7]]
Output repeated int array along default axis : [ 2 2 -4 -4 9 9 1 1 4 4 -7 -7]
Code #2 :
We are applying numpy.recarray.repeat()
to whole record array.
# Python program explaining # numpy.recarray.repeat() method # importing numpy as geek import numpy as geek # creating input array with 2 different field in_arr = geek.array([[( 5.0 , 2 ), ( 3.0 , 4 ), ( 6.0 , - 7 )], [( 9.0 , 1 ), ( 6.0 , 4 ), ( - 2.0 , - 7 )]], dtype = [( 'a' , float ), ( 'b' , int )]) print ( "Input record array : " , in_arr) # convert it to a record array, # using arr.view(np.recarray) rec_arr = in_arr.view(geek.recarray) # applying recarray.repeat methods to record array out_arr = rec_arr.repeat( 3 ) print ( "Output repeated record array : " , out_arr) |
Input record array : [[( 5., 2) ( 3., 4) ( 6., -7)]
[( 9., 1) ( 6., 4) (-2., -7)]]Output repeated record array :
[( 5., 2) ( 5., 2) ( 5., 2) ( 3., 4) ( 3., 4) ( 3., 4) ( 6., -7)
( 6., -7) ( 6., -7) ( 9., 1) ( 9., 1) ( 9., 1) ( 6., 4) ( 6., 4)
( 6., 4) (-2., -7) (-2., -7) (-2., -7)]