numpy.ma.asanyarray() function is used when we want to convert input to a masked array, conserving subclasses.
If arr is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an ndarray.
Syntax : numpy.ma.asanyarray(arr, dtype=None)
Parameters :
arr : [array_like] Input data, in any form that can be converted to a masked array.
dtype : [data-type, optional] By default, the data-type is inferred from the input data.
order : Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’.Return : [MaskedArray] Masked array interpretation of arr.
Code #1 :
# Python program explaining # numpy.ma.asanyarray() function import numpy as geek my_list = [1, 4, 8, 7, 2, 5] Â Â print ("Input list : ", my_list) Â Â Â Â out_arr = geek.ma.asanyarray(my_list) print ("output array from input list : ", out_arr)Â |
Output :
Input list : [1, 4, 8, 7, 2, 5] output array from input list : [1 4 8 7 2 5]
Â
Code #2 :
# Python program explaining # numpy.ma.asanyarray() function   import numpy as geek   my_tuple = ([1, 4, 8], [7, 2, 5])   print ("Input tuple : ", my_tuple)   out_arr = geek.ma.asanyarray(my_tuple) print ("output array from input tuple : ", out_arr) |
Output :
Input tuple : ([1, 4, 8], [7, 2, 5]) output array from input tuple : [[1 4 8] [7 2 5]]
