Thursday, October 23, 2025
HomeLanguagesNumpy MaskedArray.allequal() function | Python

Numpy MaskedArray.allequal() function | Python

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries.

numpy.MaskedArray.allequal() function return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

Syntax : numpy.ma.allequal(arr1, arr2, fill_value=True)

Parameters:
arr1, arr2 : [array_like] Input arrays to compare.
fill_value : [ bool, optional] Whether masked values in arr1 or arr2 are considered equal (True) or not (False).

Return : [ bool]Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.

Code #1 :




# Python program explaining
# numpy.MaskedArray.allequal() method 
  
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
  
# creating 1st input array 
in_arr1 = geek.array([1e8, 1e-5, -15.0])
print ("1st Input array : ", in_arr1)
  
# Now we are creating 1st masked array by making third entry as invalid. 
mask_arr1 = ma.masked_array(in_arr1, mask =[0, 0, 1])
print ("1st Masked array : ", mask_arr1)
  
# creating 2nd input array 
in_arr2 = geek.array([1e8, 1e-5, 15.0])
print ("2nd Input array : ", in_arr2)
  
# Now we are creating 2nd masked array by making third entry as invalid. 
mask_arr2 = ma.masked_array(in_arr2, mask =[0, 0, 1])
print ("2nd Masked array : ", mask_arr2)
  
# applying MaskedArray.allequal method
out_arr = ma.allequal(mask_arr1, mask_arr2, fill_value = False)
print ("Output array : ", out_arr)


Output:

1st Input array :  [ 1.0e+08  1.0e-05 -1.5e+01]
1st Masked array :  [100000000.0 1e-05 --]
2nd Input array :  [1.0e+08 1.0e-05 1.5e+01]
2nd Masked array :  [100000000.0 1e-05 --]
Output array :  False

 

Code #2 :




# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
  
# creating 1st input array 
in_arr1 = geek.array([2e8, 3e-5, -45.0])
print ("1st Input array : ", in_arr1)
  
# Now we are creating 1st masked array by making third entry as invalid. 
mask_arr1 = ma.masked_array(in_arr1, mask =[0, 0, 1])
print ("1st Masked array : ", mask_arr1)
  
# creating 2nd input array 
in_arr2 = geek.array([2e8, 3e-5, 15.0])
print ("2nd Input array : ", in_arr2)
  
# Now we are creating 2nd masked array by making third entry as invalid. 
mask_arr2 = ma.masked_array(in_arr2, mask =[0, 0, 1])
print ("2nd Masked array : ", mask_arr2)
# applying MaskedArray.allequal method
out_arr = ma.allequal(mask_arr1, mask_arr2, fill_value = True)
print ("Output  array : ", out_arr)


Output:

1st Input array :  [ 2.0e+08  3.0e-05 -4.5e+01]
1st Masked array :  [200000000.0 3e-05 --]
2nd Input array :  [2.0e+08 3.0e-05 1.5e+01]
2nd Masked array :  [200000000.0 3e-05 --]
Output  array :  True
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS