Friday, December 27, 2024
Google search engine
HomeLanguagesnumpy.ma.mask_rowcols() function | Python

numpy.ma.mask_rowcols() function | Python

In this numpy.ma.mask_rowcols() function, mask rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter.
If axis is None, rows and columns are masked.
If axis is 0, only rows are masked.
If axis is 1 or -1, only columns are masked.

Syntax : numpy.ma.mask_rowcols(arr, axis = None)
Parameters :
arr : [array_like, MaskedArray] The array to mask. The result is a MaskedArray with mask set to nomask (False). Must be a 2D array.
axis : [int, optional] Axis along which to perform the operation. Default is None.

Return : [MaskedArray] A modified version of the input array, masked depending on the value of the axis parameter.

Code #1 :




# Python program explaining
# numpy.ma.mask_rowcols() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.zeros((4, 4), dtype = int)
arr[2, 2] = 1
   
arr = ma.masked_equal(arr, 1)
  
gfg = ma.mask_rowcols(arr)
  
print (gfg)


Output :

[[0 0 -- 0]
 [0 0 -- 0]
 [-- -- -- --]
 [0 0 -- 0]]

 
Code #2 :




# Python program explaining
# numpy.ma.mask_rowcols() function
  
# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 
  
arr = geek.zeros((5, 5), dtype = int)
arr[3, 3] = 1
   
arr = ma.masked_equal(arr, 1)
  
gfg = ma.mask_rowcols(arr)
  
print (gfg)


Output :

[[0 0 0 -- 0]
 [0 0 0 -- 0]
 [0 0 0 -- 0]
 [-- -- -- -- --]
 [0 0 0 -- 0]]

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments