Thursday, December 26, 2024
Google search engine
HomeLanguagesnumpy.interp() function – Python

numpy.interp() function – Python

numpy.interp() function returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x.

Syntax : numpy.interp(x, xp, fp, left = None, right = None, period = None)

Parameters :
x : [array_like] The x-coordinates at which to evaluate the interpolated values.
xp: [1-D sequence of floats] The x-coordinates of the data points, must be increasing if the argument period is not specified. Otherwise, xp is internally sorted after normalizing the periodic boundaries with xp = xp % period.
fp : [1-D sequence of float or complex] The y-coordinates of the data points, same length as xp.
left : [optional float or complex corresponding to fp] Value to return for x < xp[0], default is fp[0].
right : [optional float or complex corresponding to fp] Value to return for x > xp[-1], default is fp[-1].
period : [None or float, optional] A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters left and right are ignored if the period is specified.

Return : [float or complex or ndarray] The interpolated values, same shape as x.

Code #1 :




# Python program explaining
# numpy.interp() function
       
# importing numpy as geek 
import numpy as geek 
   
x = 3.6
xp = [2, 4, 6]
fp = [1, 3, 5]
   
gfg = geek.interp(x, xp, fp)
  
print (gfg)


Output :

2.6

 
Code #2 :




# Python program explaining
# numpy.interp() function
       
# importing numpy as geek 
import numpy as geek 
   
x = [0, 1, 2.5, 2.72, 3.14]
xp = [2, 4, 6]
fp = [1, 3, 5]
   
gfg = geek.interp(x, xp, fp)
  
print (gfg)


Output :

[1.   1.   1.5  1.72 2.14]

RELATED ARTICLES

Most Popular

Recent Comments