Saturday, January 11, 2025
Google search engine
HomeData Modelling & AINumbers formed by flipping common set bits in two given integers

Numbers formed by flipping common set bits in two given integers

Given two positive integers A and B, the task is to flip the common set bitsin A and B.

Examples:

Input: A = 7, B = 4 
Output: 3 0 
Explanation: 
The binary representation of 7 is 111 
The binary representation of 4 is 100 
Since the 3rd bit of both A and B is a set bit. Therefore, flipping the 3rd bit of A and B modifies A = 3 and B = 0 
Therefore, the required output is 3 0

Input: A = 10, B = 20 
Output: 10 20

Naive Approach: The simplest approach to solve this problem is to check if the ith bit of both A and B is a set or not. If found to be true, then flip the ith bit of both A and B. Finally, print the updated values of both A and B.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to flip bits of A and B
// which are set bits in A and B
void flipBitsOfAandB(int A, int B)
{
    // Iterator all possible bits
    // of A and B
    for (int i = 0; i < 32; i++) {
 
        // If ith bit is set in
        // both A and B
        if ((A & (1 << i)) && (B & (1 << i))) {
 
            // Clear i-th bit of A
            A = A ^ (1 << i);
 
            // Clear i-th bit of B
            B = B ^ (1 << i);
        }
    }
 
    // Print A and B
    cout << A << " " << B;
}
 
// Driver Code
int main()
{
    int A = 7, B = 4;
 
    flipBitsOfAandB(A, B);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
   
class GFG{
   
// Function to flip bits of A and B
// which are set bits in A and B
static void flipBitsOfAandB(int A, int B)
{
     
    // Iterator all possible bits
    // of A and B
    for(int i = 0; i < 32; i++)
    {
         
        // If ith bit is set in
        // both A and B
        if (((A & (1 << i)) &
             (B & (1 << i))) != 0)
        {
             
            // Clear i-th bit of A
            A = A ^ (1 << i);
  
            // Clear i-th bit of B
            B = B ^ (1 << i);
        }
    }
  
    // Print A and B
    System.out.print(A + " " + B);
}
   
// Driver Code
public static void main(String[] args)
{
    int A = 7, B = 4;
  
    flipBitsOfAandB(A, B);
}
}
 
// This code is contributed by code_hunt


Python3




# Python3 program to implement
# the above approach
 
# Function to flip bits of A and B
# which are set in both of them
def flipBitsOfAandB(A, B):
     
    # Iterate all possible bits of
    # A and B
    for i in range(0, 32):
         
        # If ith bit is set in
        # both A and B
        if ((A & (1 << i)) and
            (B & (1 << i))):
             
            # Clear i-th bit of A
            A = A ^ (1 << i)
 
            # Clear i-th bit of B
            B = B ^ (1 << i)
             
    print(A, B)
 
# Driver Code 
if __name__ == "__main__" :
     
    A = 7
    B = 4
     
    flipBitsOfAandB(A, B)
     
# This code is contributed by Virusbuddah_


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to flip bits of A and B
// which are set bits in A and B
static void flipBitsOfAandB(int A, int B)
{
     
    // Iterator all possible bits
    // of A and B
    for(int i = 0; i < 32; i++)
    {
         
        // If ith bit is set in
        // both A and B
        if (((A & (1 << i)) &
             (B & (1 << i))) != 0)
        {
             
            // Clear i-th bit of A
            A = A ^ (1 << i);
 
            // Clear i-th bit of B
            B = B ^ (1 << i);
        }
    }
 
    // Print A and B
    Console.Write(A + " " + B);
}
 
// Driver Code
public static void Main(string[] args)
{
    int A = 7, B = 4;
 
    flipBitsOfAandB(A, B);
}
}
 
// This code is contributed by chitranayal


Javascript




<script>
// javascript program to implement
// the above approach
 
 
// Function to flip bits of A and B
// which are set bits in A and B
function flipBitsOfAandB(A , B)
{
     
    // Iterator all possible bits
    // of A and B
    for(i = 0; i < 32; i++)
    {
         
        // If ith bit is set in
        // both A and B
        if (((A & (1 << i)) &
             (B & (1 << i))) != 0)
        {
             
            // Clear i-th bit of A
            A = A ^ (1 << i);
  
            // Clear i-th bit of B
            B = B ^ (1 << i);
        }
    }
  
    // Print A and B
    document.write(A + " " + B);
}
   
// Driver Code
var A = 7, B = 4;
 
flipBitsOfAandB(A, B);
 
// This code is contributed by Princi Singh
 
</script>


Output: 

3 0

 

Time Complexity: O(32) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is based on the following observations:

Find the bits which are set bits in both A and B using (A & B). 
Clear the bits of A which are set bits in both A and B using A = (A ^ (A & B)) 
Clear the bits of B which are set bits in both A and B using B = (B ^ (A & B)) 
 

Follow the steps below to solve the problem:

  • Update A = (A ^ (A & B)).
  • Update B = (B ^ (A & B)).
  • Finally, print the updated values of A and B.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to flip bits of A and B
// which are set in both of them
void flipBitsOfAandB(int A, int B)
{
 
    // Clear the bits of A which
    // are set in both A and B
    A = A ^ (A & B);
 
    // Clear the bits of B which
    // are set in both A and B
    B = B ^ (A & B);
 
    // Print updated A and B
    cout << A << " " << B;
}
 
// Driver Code
int main()
{
    int A = 10, B = 20;
 
    flipBitsOfAandB(A, B);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
    
class GFG{
    
// Function to flip bits of A and B
// which are set in both of them
static void flipBitsOfAandB(int A, int B)
{
     
    // Clear the bits of A which
    // are set in both A and B
    A = A ^ (A & B);
     
    // Clear the bits of B which
    // are set in both A and B
    B = B ^ (A & B);
  
    // Print updated A and B
    System.out.print(A + " " + B);
}
    
// Driver Code
public static void main(String[] args)
{
    int A = 10, B = 20;
     
    flipBitsOfAandB(A, B);
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program to implement
# the above approach
 
# Function to flip bits of A and B
# which are set in both of them
def flipBitsOfAandB(A, B):
     
    # Clear the bits of A which
    # are set in both A and B
    A = A ^ (A & B)
 
    # Clear the bits of B which
    # are set in both A and B
    B = B ^ (A & B)
 
    # Print updated A and B
    print(A, B)
 
# Driver Code 
if __name__ == "__main__" :
     
    A = 10
    B = 20
     
    flipBitsOfAandB(A, B)
     
# This code is contributed by Virusbuddah_


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
    
// Function to flip bits of A and B
// which are set in both of them
static void flipBitsOfAandB(int A, int B)
{
   
    // Clear the bits of A which
    // are set in both A and B
    A = A ^ (A & B);
     
    // Clear the bits of B which
    // are set in both A and B
    B = B ^ (A & B);
  
    // Print updated A and B
    Console.Write(A + " " + B);
}
    
// Driver Code
public static void Main(String[] args)
{
    int A = 10, B = 20;
     
    flipBitsOfAandB(A, B);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// javascript program to implement
// the above approach
 
    
// Function to flip bits of A and B
// which are set in both of them
function flipBitsOfAandB(A , B)
{
     
    // Clear the bits of A which
    // are set in both A and B
    A = A ^ (A & B);
     
    // Clear the bits of B which
    // are set in both A and B
    B = B ^ (A & B);
  
    // Print updated A and B
    document.write(A + " " + B);
}
    
// Driver Code
var A = 10, B = 20;
 
flipBitsOfAandB(A, B);
 
// This code contributed by shikhasingrajput
 
</script>


Output: 

10 20

 

Time Complexity: O(1) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
06 Jan, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments