Friday, October 17, 2025
HomeData Modelling & AINumber of ways to reach the end of matrix with non-zero AND...

Number of ways to reach the end of matrix with non-zero AND value

Given an N * N matrix arr[][] consisting of non-negative integers, the task is to find the number of ways to reach arr[N – 1][N – 1] with a non-zero AND value starting from the arr[0][0] by going down or right in every move. Whenever a cell arr[i][j] is reached, ‘AND’ value is updated as currentVal & arr[i][j].

Examples: 

Input: arr[][] = { 
{1, 1, 1}, 
{1, 1, 1}, 
{1, 1, 1}}
Output:
All the paths will give non-zero and value. 
Thus, number of ways equals 6.
Input: arr[][] = { 
{1, 1, 2}, 
{1, 2, 1}, 
{2, 1, 1}} 
Output: 0  

Approach: This problem can be solved using dynamic programming. First, we need to decide the states of the DP. For every cell arr[i][j] and a number X, we will store the number of ways to reach the arr[N – 1][N – 1] from arr[i][j] with non-zero AND where X is the AND value of path till now. Thus, our solution will use 3-dimensional dynamic programming, two for the coordinates of the cells and one for X.
The required recurrence relation is: 

dp[i][j][X] = dp[i][j + 1][X & arr[i][j]] + dp[i + 1][j][X & arr[i][j]]  

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define n 3
#define maxV 20
using namespace std;
 
// 3d array to store
// states of dp
int dp[n][n][maxV];
 
// Array to determine whether
// a state has been solved before
int v[n][n][maxV];
 
// Function to return the count of required paths
int countWays(int i, int j, int x, int arr[][n])
{
 
    // Base cases
    if (i == n || j == n)
        return 0;
 
    x = (x & arr[i][j]);
    if (x == 0)
        return 0;
 
    if (i == n - 1 && j == n - 1)
        return 1;
 
    // If a state has been solved before
    // it won't be evaluated again
    if (v[i][j][x])
        return dp[i][j][x];
 
    v[i][j][x] = 1;
 
    // Recurrence relation
    dp[i][j][x] = countWays(i + 1, j, x, arr)
                  + countWays(i, j + 1, x, arr);
 
    return dp[i][j][x];
}
 
// Driver code
int main()
{
    int arr[n][n] = { { 1, 2, 1 },
                      { 1, 1, 0 },
                      { 2, 1, 1 } };
 
    cout << countWays(0, 0, arr[0][0], arr);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG {
 
    static int n = 3;
    static int maxV = 20;
 
    // 3d array to store
    // states of dp
    static int[][][] dp = new int[n][n][maxV];
 
    // Array to determine whether
    // a state has been solved before
    static int[][][] v = new int[n][n][maxV];
 
    // Function to return the count of required paths
    static int countWays(int i, int j,
                         int x, int arr[][])
    {
 
        // Base cases
        if (i == n || j == n) {
            return 0;
        }
 
        x = (x & arr[i][j]);
        if (x == 0) {
            return 0;
        }
 
        if (i == n - 1 && j == n - 1) {
            return 1;
        }
 
        // If a state has been solved before
        // it won't be evaluated again
        if (v[i][j][x] == 1) {
            return dp[i][j][x];
        }
 
        v[i][j][x] = 1;
 
        // Recurrence relation
        dp[i][j][x] = countWays(i + 1, j, x, arr)
                      + countWays(i, j + 1, x, arr);
 
        return dp[i][j][x];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[][] = { { 1, 2, 1 },
                        { 1, 1, 0 },
                        { 2, 1, 1 } };
 
        System.out.println(countWays(0, 0, arr[0][0], arr));
    }
}
 
// This code contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
n = 3
maxV = 20
 
# 3d array to store states of dp
dp = [[[0 for i in range(maxV)]
          for i in range(n)]
          for i in range(n)]
 
# Array to determine whether
# a state has been solved before
v = [[[0 for i in range(maxV)]
         for i in range(n)]
         for i in range(n)]
 
# Function to return
# the count of required paths
def countWays(i, j, x, arr):
 
    # Base cases
    if (i == n or j == n):
        return 0
 
    x = (x & arr[i][j])
    if (x == 0):
        return 0
 
    if (i == n - 1 and j == n - 1):
        return 1
 
    # If a state has been solved before
    # it won't be evaluated again
    if (v[i][j][x]):
        return dp[i][j][x]
 
    v[i][j][x] = 1
 
    # Recurrence relation
    dp[i][j][x] = countWays(i + 1, j, x, arr) + \
                  countWays(i, j + 1, x, arr);
 
    return dp[i][j][x]
 
# Driver code
arr = [[1, 2, 1 ],
       [1, 1, 0 ],
       [2, 1, 1 ]]
 
print(countWays(0, 0, arr[0][0], arr))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    static int n = 3;
    static int maxV = 20;
 
    // 3d array to store
    // states of dp
    static int[,,] dp = new int[n, n, maxV];
 
    // Array to determine whether
    // a state has been solved before
    static int[,,] v = new int[n, n, maxV];
 
    // Function to return the count of required paths
    static int countWays(int i, int j,
                        int x, int [,]arr)
    {
 
        // Base cases
        if (i == n || j == n)
        {
            return 0;
        }
 
        x = (x & arr[i, j]);
        if (x == 0)
        {
            return 0;
        }
 
        if (i == n - 1 && j == n - 1)
        {
            return 1;
        }
 
        // If a state has been solved before
        // it won't be evaluated again
        if (v[i, j, x] == 1)
        {
            return dp[i, j, x];
        }
 
        v[i, j, x] = 1;
 
        // Recurrence relation
        dp[i, j, x] = countWays(i + 1, j, x, arr)
                    + countWays(i, j + 1, x, arr);
 
        return dp[i, j, x];
    }
 
    // Driver code
    public static void Main()
    {
        int [,]arr = { { 1, 2, 1 },
                        { 1, 1, 0 },
                        { 2, 1, 1 } };
 
    Console.WriteLine(countWays(0, 0, arr[0,0], arr));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript implementation of the approach
var n = 3;
var maxV = 20;
 
// 3d array to store
// states of dp
var dp = new Array(n);
 
for(var i = 0; i<n; i++)
{
    dp[i] = new Array(n);
    for(var j =0; j<n;j++)
    {
        dp[i][j] = new Array(maxV);
    }
}
 
var v = new Array(n);
 
// Array to determine whether
// a state has been solved before
for(var i = 0; i<n; i++)
{
    v[i] = new Array(n);
    for(var j =0; j<n;j++)
    {
        v[i][j] = new Array(maxV);
    }
}
 
// Function to return the count of required paths
function countWays(i, j, x, arr)
{
 
    // Base cases
    if (i == n || j == n)
        return 0;
 
    x = (x & arr[i][j]);
    if (x == 0)
        return 0;
 
    if (i == n - 1 && j == n - 1)
        return 1;
 
    // If a state has been solved before
    // it won't be evaluated again
    if (v[i][j][x])
        return dp[i][j][x];
 
    v[i][j][x] = 1;
 
    // Recurrence relation
    dp[i][j][x] = countWays(i + 1, j, x, arr)
                  + countWays(i, j + 1, x, arr);
 
    return dp[i][j][x];
}
 
// Driver code
var arr = [ [ 1, 2, 1 ],
                  [ 1, 1, 0 ],
                  [ 2, 1, 1 ] ];
document.write( countWays(0, 0, arr[0][0], arr));
 
 
</script>


Output: 

1

 

Time Complexity: O(n2)

Auxiliary Space: O(n4 * maxV)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS