Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AINumber of ways to get even sum by choosing three numbers from...

Number of ways to get even sum by choosing three numbers from 1 to N

Given an integer N, find the number of ways we can choose 3 numbers from {1, 2, 3 …, N} such that their sum is even. 
Examples: 
 

Input :  N = 3
Output : 1
Explanation: Select 1, 2 and 3

Input :  N = 4
Output :  2
Either select (1, 2, 3) or (1, 3, 4)

 

Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

To get sum even there can be only 2 cases: 
 

  1. Take 2 odd numbers and 1 even.
  2. Take all even numbers.

 

If n is even,
  Count of odd numbers = n/2 and even = n/2.
Else
  Count odd numbers = n/2 +1 and even = n/2.

Case 1 – No. of ways will be : oddC2 * even. 
Case 2 – No. of ways will be : evenC3.
So, total ways will be Case_1_result + Case_2_result. 
 

C++




// C++ program for above implementation
#include <bits/stdc++.h>
#define MOD 1000000007
using namespace std;
  
// Function to count number of ways
int countWays(int N)
{
    long long int count, odd = N / 2, even;
    if (N & 1)
        odd = N / 2 + 1;
  
    even = N / 2;
  
    // Case 1: 2 odds and 1 even
    count = (((odd * (odd - 1)) / 2) * even) % MOD;
  
    // Case 2: 3 evens
    count = (count + ((even * (even - 1) * 
                           (even - 2)) / 6)) % MOD;
  
    return count;
}
  
// Driver code
int main()
{
    int n = 10;
    cout << countWays(n) << endl;
    return 0;
}


Java




// java program for above implementation
import java.io.*;
  
class GFG {
      
    static long MOD = 1000000007;
      
    // Function to count number of ways
    static long countWays(int N)
    {
        long count, odd = N / 2, even;
          
        if ((N & 1) > 0)
            odd = N / 2 + 1;
      
        even = N / 2;
      
        // Case 1: 2 odds and 1 even
        count = (((odd * (odd - 1)) / 2)
                          * even) % MOD;
      
        // Case 2: 3 evens
        count = (count + ((even * (even
                - 1) * (even - 2)) / 6))
                                  % MOD;
      
        return (long)count;
    }
      
    // Driver code
    static public void main (String[] args)
    {
        int n = 10;
          
        System.out.println(countWays(n));
    }
}
  
// This code is contributed by vt_m.


Python3




# Python3 code for above implementation
  
MOD = 1000000007
  
# Function to count number of ways
def countWays( N ):
    odd = N / 2
    if N & 1:
        odd = N / 2 + 1
    even = N / 2
      
    # Case 1: 2 odds and 1 even
    count = (((odd * (odd - 1)) / 2) * even) % MOD
  
    # Case 2: 3 evens
    count = (count + ((even * (even - 1) *
            (even - 2)) / 6)) % MOD
    return count
  
# Driver code
n = 10
print(int(countWays(n)))
  
# This code is contributed by "Sharad_Bhardwaj"


C#




// C# program for above implementation
using System;
  
public class GFG {
      
    static long MOD = 1000000007;
      
    // Function to count number of ways
    static long countWays(int N)
    {
        long count, odd = N / 2, even;
          
        if ((N & 1) > 0)
            odd = N / 2 + 1;
      
        even = N / 2;
      
        // Case 1: 2 odds and 1 even
        count = (((odd * (odd - 1)) / 2) 
                            * even) % MOD;
      
        // Case 2: 3 evens
        count = (count + ((even * (even 
                  - 1) * (even - 2)) / 6))
                                    % MOD;
      
        return (long)count;
    }
      
    // Driver code
    static public void Main ()
    {
        int n = 10;
  
        Console.WriteLine(countWays(n));
    }
}
  
// This code is contributed by vt_m.


PHP




<?php
// PHP program for 
// above implementation
  
$MOD = 1000000007;
  
// Function to count 
// number of ways
function countWays($N)
{
    global $MOD;
      
    $count
    $odd =$N / 2; 
    $even;
    if ($N & 1)
        $odd = $N / 2 + 1;
  
    $even = $N / 2;
  
    // Case 1: 2 odds 
    // and 1 even
    $count = ((($odd * ($odd - 1)) / 2) * 
                            $even) % $MOD;
  
    // Case 2: 3 evens
    $count = ($count + (($even * ($even - 1) * 
                        ($even - 2)) / 6)) % $MOD;
  
    return $count;
}
  
    // Driver Code
    $n = 10;
    echo countWays($n);
  
// This code is contributed by anuj_67.
?>


Javascript




<script>
  
// Javascript program for above implementation
let MOD = 1000000007;
        
    // Function to count number of ways
    function countWays(N)
    {
        let count, odd = N / 2, even;
            
        if ((N & 1) > 0)
            odd = N / 2 + 1;
        
        even = N / 2;
        
        // Case 1: 2 odds and 1 even
        count = (((odd * (odd - 1)) / 2)
                          * even) % MOD;
        
        // Case 2: 3 evens
        count = (count + ((even * (even
                - 1) * (even - 2)) / 6))
                                  % MOD;
        
        return count;
    }
      
// Driver code
        let n = 10;          
        document.write(countWays(n));
          
        // This code is contributed by code_hunt.
</script>


Output:

60

Time Complexity: O(1)
Auxiliary Space: O(1)

This article is contributed by Sahil Chhabra. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments