Sunday, January 12, 2025
Google search engine
HomeLanguagesDynamic ProgrammingNumber of ways to divide string in sub-strings such to make them...

Number of ways to divide string in sub-strings such to make them in lexicographically increasing sequence

Given a string S, the task is to find the number of ways to divide/partition the given string in sub-strings S1, S2, S3, …, Sk such that S1 < S2 < S3 < … < Sk (Lexicographically).

Examples: 

Input: S = “aabc” 
Output:
Following are the allowed partitions: 
{“aabc”}, {“aa”, “bc”}, {“aab”, “c”}, {“a”, “abc”}, 
{“a, “ab”, “c”} and {“aa”, “b”, “c”}.

Input: S = “za” 
Output:
Only possible partition is {“za”}. 

Approach: This problem can be solved using dynamic programming

  • Define DP[i][j] as the number of ways to divide the sub-string S[0…j] such that S[i, j] is the last partition.
  • Now, the recurrence relations will be DP[i][j] = Summation of (DP[k][i – 1]) for all k ? 0 and i ? N – 1 where N is the length of the string.
  • Final answer will be the summation of (DP[i][N – 1]) for all i between 0 to N – 1 as these sub-strings will become the last partition in some possible way of partitioning.
  • So, here for all the sub-strings S[i][j], find the sub-string S[k][i – 1] such that S[k][i – 1] is lexicographically less than S[i][j] and add DP[k][i – 1] to DP[i][j].

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of
// ways of partitioning
int ways(string s, int n)
{
 
    int dp[n][n];
 
    // Initialize DP table
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) {
            dp[i][j] = 0;
        }
 
    // Base Case
    for (int i = 0; i < n; i++)
        dp[0][i] = 1;
 
    for (int i = 1; i < n; i++) {
 
        // To store sub-string S[i][j]
        string temp;
        for (int j = i; j < n; j++) {
            temp += s[j];
 
            // To store sub-string S[k][i-1]
            string test;
            for (int k = i - 1; k >= 0; k--) {
                test += s[k];
                if (test < temp) {
                    dp[i][j] += dp[k][i - 1];
                }
            }
        }
    }
 
    int ans = 0;
    for (int i = 0; i < n; i++) {
        // Add all the ways where S[i][n-1]
        // will be the last partition
        ans += dp[i][n - 1];
    }
 
    return ans;
}
 
// Driver code
int main()
{
    string s = "aabc";
    int n = s.length();
 
    cout << ways(s, n);
 
    return 0;
}


Java




// Java implementation of the above approach
class GFG
{
    // Function to return the number of
    // ways of partitioning
    static int ways(String s, int n)
    {
        int dp[][] = new int[n][n];
     
        // Initialize DP table
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
            {
                dp[i][j] = 0;
            }
     
        // Base Case
        for (int i = 0; i < n; i++)
            dp[0][i] = 1;
     
        for (int i = 1; i < n; i++)
        {
     
            // To store sub-string S[i][j]
            String temp = "";
            for (int j = i; j < n; j++)
            {
                temp += s.charAt(j);
     
                // To store sub-string S[k][i-1]
                String test = "";
                for (int k = i - 1; k >= 0; k--)
                {
                    test += s.charAt(k);
                    if (test.compareTo(temp) < 0)
                    {
                        dp[i][j] += dp[k][i - 1];
                    }
                }
            }
        }
     
        int ans = 0;
        for (int i = 0; i < n; i++)
        {
            // Add all the ways where S[i][n-1]
            // will be the last partition
            ans += dp[i][n - 1];
        }
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        String s = "aabc";
        int n = s.length();
     
        System.out.println(ways(s, n));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the number of
# ways of partitioning
def ways(s, n):
 
    dp = [[0 for i in range(n)]
             for i in range(n)]
 
    # Base Case
    for i in range(n):
        dp[0][i] = 1
 
    for i in range(1, n):
 
        # To store sub-S[i][j]
        temp = ""
        for j in range(i, n):
            temp += s[j]
 
            # To store sub-S[k][i-1]
            test = ""
            for k in range(i - 1, -1, -1):
                test += s[k]
                if (test < temp):
                    dp[i][j] += dp[k][i - 1]
 
    ans = 0
    for i in range(n):
         
        # Add all the ways where S[i][n-1]
        # will be the last partition
        ans += dp[i][n - 1]
 
    return ans
 
# Driver code
s = "aabc"
n = len(s)
 
print(ways(s, n))
 
# This code is contributed by Mohit Kumarv


C#




// C# implementation of the above approach
using System;
 
class GFG
{
    // Function to return the number of
    // ways of partitioning
    static int ways(String s, int n)
    {
        int [,]dp = new int[n, n];
     
        // Initialize DP table
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
            {
                dp[i, j] = 0;
            }
     
        // Base Case
        for (int i = 0; i < n; i++)
            dp[0, i] = 1;
     
        for (int i = 1; i < n; i++)
        {
     
            // To store sub-string S[i,j]
            String temp = "";
            for (int j = i; j < n; j++)
            {
                temp += s[j];
     
                // To store sub-string S[k,i-1]
                String test = "";
                for (int k = i - 1; k >= 0; k--)
                {
                    test += s[k];
                    if (test.CompareTo(temp) < 0)
                    {
                        dp[i, j] += dp[k, i - 1];
                    }
                }
            }
        }
     
        int ans = 0;
        for (int i = 0; i < n; i++)
        {
            // Add all the ways where S[i,n-1]
            // will be the last partition
            ans += dp[i, n - 1];
        }
        return ans;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        String s = "aabc";
        int n = s.Length;
     
        Console.WriteLine(ways(s, n));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the number of
// ways of partitioning
function ways(s, n)
{
 
    var dp = Array.from(Array(n), ()=> Array(n).fill(0));
 
    // Base Case
    for (var i = 0; i < n; i++)
        dp[0][i] = 1;
 
    for (var i = 1; i < n; i++) {
 
        // To store sub-string S[i][j]
        var temp;
        for (var j = i; j < n; j++) {
            temp += s[j];
 
            // To store sub-string S[k][i-1]
            var test;
            for (var k = i - 1; k >= 0; k--) {
                test += s[k];
                if (test < temp) {
                    dp[i][j] += dp[k][i - 1];
                }
            }
        }
    }
 
    var ans = 0;
    for (var i = 0; i < n; i++) {
        // Add all the ways where S[i][n-1]
        // will be the last partition
        ans += dp[i][n - 1];
    }
 
    return ans;
}
 
// Driver code
var s = "aabc";
var n = s.length;
document.write( ways(s, n));
 
// This code is contributed by itsok.
</script>


Output: 

6

 

Time Complexity: O(n2)

Auxiliary Space: O(n2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments