Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AINumber of ways to divide an array into K equal sum sub-arrays

Number of ways to divide an array into K equal sum sub-arrays

Given an integer K and an array arr[] of N integers, the task is to find the number of ways to split the array into K equal sum sub-arrays of non-zero lengths.

Examples:  

Input: arr[] = {0, 0, 0, 0}, K = 3 
Output:
All possible ways are: 
{{0}, {0}, {0, 0}} 
{{0}, {0, 0}, {0}} 
{{0, 0}, {0}, {0}}
Input: arr[] = {1, -1, 1, -1}, K = 2 
Output: 1  

Approach: This problem can be solved using dynamic programming. Following will be our algorithm: 

  1. Find the sum of all the elements of the array and store it in a variable SUM
    Before going to step 2, let’s try and understand the states of the DP. 
    For that, visualize putting bars to divide the array into K equal parts. So, we have to put K – 1 bar in total. 
    Thus, our states of dp will contain 2 terms. 
    • i – index of the element we are currently upon.
    • ck – number of bars we have already inserted + 1.
  2. Call a recursive function with i = 0 and ck = 1 and the recurrence relation will be:

Case 1: sum upto index i equals ((SUM)/k)* ck 
dp[i][ck] = dp[i+1][ck] + dp[i+1][ck+1] 
Case 2: sum upto index not i equals ((SUM)/k)* ck 
dp[i][ck] = dp[i+1][ck] 
 

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define max_size 20
#define max_k 20
using namespace std;
 
// Array to store the states of DP
int dp[max_size][max_k];
 
// Array to check if a
// state has been solved before
bool v[max_size][max_k];
 
// To store the sum of
// the array elements
int sum = 0;
 
// Function to find the sum of
// all the array elements
void findSum(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        sum += arr[i];
}
 
// Function to return the number of ways
int cntWays(int arr[], int i, int ck,
            int k, int n, int curr_sum)
{
    // If sum is not divisible by k
    // answer will be zero
    if (sum % k != 0)
        return 0;
    if (i != n and ck == k + 1)
        return 0;
 
    // Base case
    if (i == n) {
        if (ck == k + 1)
            return 1;
        else
            return 0;
    }
 
    // To check if a state
    // has been solved before
    if (v[i][ck])
        return dp[i][ck];
 
    // Sum of all the numbers from the beginning
    // of the array
    curr_sum += arr[i];
 
    // Setting the current state as solved
    v[i][ck] = 1;
 
    // Recurrence relation
    dp[i][ck] = cntWays(arr, i + 1, ck, k, n, curr_sum);
    if (curr_sum == (sum / k) * ck)
        dp[i][ck] += cntWays(arr, i + 1, ck + 1, k, n, curr_sum);
 
    // Returning solved state
    return dp[i][ck];
}
 
// Driver code
int main()
{
    int arr[] = { 1, -1, 1, -1, 1, -1 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;
 
    // Function call to find the
    // sum of the array elements
    findSum(arr, n);
 
    // Print the number of ways
    cout << cntWays(arr, 0, 1, k, n, 0);
}


Java




// Java implementation of the approach
class GFG
{
     
static int max_size= 20;
static int max_k =20;
 
// Array to store the states of DP
static int [][]dp = new int[max_size][max_k];
 
// Array to check if a
// state has been solved before
static boolean [][]v = new boolean[max_size][max_k];
 
// To store the sum of
// the array elements
static int sum = 0;
 
// Function to find the sum of
// all the array elements
static void findSum(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        sum += arr[i];
}
 
// Function to return the number of ways
static int cntWays(int arr[], int i, int ck,
            int k, int n, int curr_sum)
{
    // If sum is not divisible by k
    // answer will be zero
    if (sum % k != 0)
        return 0;
    if (i != n && ck == k + 1)
        return 0;
 
    // Base case
    if (i == n)
    {
        if (ck == k + 1)
            return 1;
        else
            return 0;
    }
 
    // To check if a state
    // has been solved before
    if (v[i][ck])
        return dp[i][ck];
 
    // Sum of all the numbers from the beginning
    // of the array
    curr_sum += arr[i];
 
    // Setting the current state as solved
    v[i][ck] = true;
 
    // Recurrence relation
    dp[i][ck] = cntWays(arr, i + 1, ck, k, n, curr_sum);
    if (curr_sum == (sum / k) * ck)
        dp[i][ck] += cntWays(arr, i + 1, ck + 1, k, n, curr_sum);
 
    // Returning solved state
    return dp[i][ck];
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, -1, 1, -1, 1, -1 };
    int n = arr.length;
    int k = 2;
 
    // Function call to find the
    // sum of the array elements
    findSum(arr, n);
 
    // Print the number of ways
    System.out.println(cntWays(arr, 0, 1, k, n, 0));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation of the approach
import numpy as np
 
max_size = 20
max_k = 20
 
 
# Array to store the states of DP
dp = np.zeros((max_size,max_k));
 
# Array to check if a
# state has been solved before
v = np.zeros((max_size,max_k));
 
# To store the sum of
# the array elements
sum = 0;
 
# Function to find the sum of
# all the array elements
def findSum(arr, n) :
    global sum
    for i in range(n) :
        sum += arr[i];
 
 
# Function to return the number of ways
def cntWays(arr, i, ck, k, n,  curr_sum) :
 
    # If sum is not divisible by k
    # answer will be zero
    if (sum % k != 0) :
        return 0;
    if (i != n and ck == k + 1) :
        return 0;
 
    # Base case
    if (i == n) :
        if (ck == k + 1) :
            return 1;
        else :
            return 0;
 
    # To check if a state
    # has been solved before
    if (v[i][ck]) :
        return dp[i][ck];
 
    # Sum of all the numbers from the beginning
    # of the array
    curr_sum += arr[i];
 
    # Setting the current state as solved
    v[i][ck] = 1;
 
    # Recurrence relation
    dp[i][ck] = cntWays(arr, i + 1, ck, k, n, curr_sum);
    if (curr_sum == (sum / k) * ck)  :
        dp[i][ck] += cntWays(arr, i + 1, ck + 1, k, n, curr_sum);
 
    # Returning solved state
    return dp[i][ck];
  
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, -1, 1, -1, 1, -1 ];
    n = len(arr);
    k = 2;
 
    # Function call to find the
    # sum of the array elements
    findSum(arr, n);
 
    # Print the number of ways
    print(cntWays(arr, 0, 1, k, n, 0));
 
    # This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;    
     
class GFG
{
     
static int max_size= 20;
static int max_k =20;
 
// Array to store the states of DP
static int [,]dp = new int[max_size, max_k];
 
// Array to check if a
// state has been solved before
static Boolean [,]v = new Boolean[max_size, max_k];
 
// To store the sum of
// the array elements
static int sum = 0;
 
// Function to find the sum of
// all the array elements
static void findSum(int []arr, int n)
{
    for (int i = 0; i < n; i++)
        sum += arr[i];
}
 
// Function to return the number of ways
static int cntWays(int []arr, int i, int ck,
            int k, int n, int curr_sum)
{
    // If sum is not divisible by k
    // answer will be zero
    if (sum % k != 0)
        return 0;
    if (i != n && ck == k + 1)
        return 0;
 
    // Base case
    if (i == n)
    {
        if (ck == k + 1)
            return 1;
        else
            return 0;
    }
 
    // To check if a state
    // has been solved before
    if (v[i, ck])
        return dp[i, ck];
 
    // Sum of all the numbers from the beginning
    // of the array
    curr_sum += arr[i];
 
    // Setting the current state as solved
    v[i, ck] = true;
 
    // Recurrence relation
    dp[i,ck] = cntWays(arr, i + 1, ck, k, n, curr_sum);
    if (curr_sum == (sum / k) * ck)
        dp[i, ck] += cntWays(arr, i + 1, ck + 1, k, n, curr_sum);
 
    // Returning solved state
    return dp[i, ck];
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, -1, 1, -1, 1, -1 };
    int n = arr.Length;
    int k = 2;
 
    // Function call to find the
    // sum of the array elements
    findSum(arr, n);
 
    // Print the number of ways
    Console.WriteLine(cntWays(arr, 0, 1, k, n, 0));
}
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the approach
 
var max_size = 20;
var max_k = 20
 
// Array to store the states of DP
var dp = Array.from(Array(max_size), ()=> Array(max_k));
 
// Array to check if a
// state has been solved before
var v = Array.from(Array(max_size), ()=> Array(max_k));
 
// To store the sum of
// the array elements
var sum = 0;
 
// Function to find the sum of
// all the array elements
function findSum(arr, n)
{
    for (var i = 0; i < n; i++)
        sum += arr[i];
}
 
// Function to return the number of ways
function cntWays(arr, i, ck, k, n, curr_sum)
{
    // If sum is not divisible by k
    // answer will be zero
    if (sum % k != 0)
        return 0;
    if (i != n && ck == k + 1)
        return 0;
 
    // Base case
    if (i == n) {
        if (ck == k + 1)
            return 1;
        else
            return 0;
    }
 
    // To check if a state
    // has been solved before
    if (v[i][ck])
        return dp[i][ck];
 
    // Sum of all the numbers from the beginning
    // of the array
    curr_sum += arr[i];
 
    // Setting the current state as solved
    v[i][ck] = 1;
 
    // Recurrence relation
    dp[i][ck] = cntWays(arr, i + 1, ck, k, n, curr_sum);
    if (curr_sum == (sum / k) * ck)
        dp[i][ck] += cntWays(arr, i + 1, ck + 1, k, n, curr_sum);
 
    // Returning solved state
    return dp[i][ck];
}
 
// Driver code
var arr = [1, -1, 1, -1, 1, -1];
var n = arr.length;
var k = 2;
// Function call to find the
// sum of the array elements
findSum(arr, n);
// Print the number of ways
document.write( cntWays(arr, 0, 1, k, n, 0));
 
 
</script>


Output: 

2

 

Time Complexity: O(n*k)
Auxiliary Space: O(n*k)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments