Given a binary tree, the task is to count the number of ways to remove a single edge from the tree such that the tree gets divided into two halves with equal sum.
Examples:
Input: 1 / \ -1 -1 \ 1 Output: 1 Only way to do this will be to remove the edge from the right of the root. After that we will get 2 sub-trees with sum = 0. 1 / -1 and -1 \ 1 will be the two sub-trees. Input: 1 / \ -1 -1 \ -1 Output: 2
A simple solution will be to remove all the edges of the tree one by one and check if that splits the tree into two halves with the same sum. If it does, we will increase the final answer by 1. This will take O(N2) time in the worst case where “N” is the number of nodes in the tree.
Efficient approach:
- Create a variable ‘sum’ and store the sum of all the elements of the Binary tree in it. We can find the sum of all the elements of a Binary tree in O(N) time as discussed in this article.
- Now we perform the following steps recursively starting from root node:
- Find the sum of all the elements of its right sub-tree (“R”). If it’s equal to half of the total sum, we increase the count by 1. This is because removing the edge connecting the current node with its right child will divide the tree into two trees with equal sum.
- Find the sum of all the elements of its left sub-tree (“L”). If it’s equal to half of the total sum, we increase the count by 1.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Node of a binary tree struct node { int data; node* left; node* right; node( int data) { this ->data = data; left = NULL; right = NULL; } }; // Function to find the sum of // all the nodes of BST int findSum(node* curr) { // If current node is // null if (curr == NULL) return 0; // Else return curr->data + findSum(curr->left) + findSum(curr->right); } // Function to recursively check // if removing any edge divides tree into // two halves int checkSum(node* curr, int sum, int & ans) { // Variable to store the // sum from left and right // child int l = 0, r = 0; // Checking sum from left sub-tree // if its not null if (curr->left != NULL) { l = checkSum(curr->left, sum, ans); if (2 * l == sum) ans++; } // Checking sum from right sub-tree // if its not null if (curr->right != NULL) { r = checkSum(curr->right, sum, ans); if (2 * r == sum) ans++; } // Finding the sum of all the elements // of current node return l + r + curr->data; } // Function to return the number // of ways to remove an edge int cntWays(node* root) { // If root is null if (root == NULL) return 0; // To store the final answer int ans = 0; // Sum of all the elements of BST int sum = findSum(root); // If sum is odd then it won't be possible // to break it into two halves if (sum % 2 == 1) return 0; // Calling the checkSum function checkSum(root, sum, ans); // Returning the final answer return ans; } // Driver code int main() { node* root = new node(1); root->left = new node(-1); root->right = new node(-1); root->right->right = new node(1); // Print the count of possible ways cout << cntWays(root); return 0; } |
Java
// Java implementation of the approach class GFG { // Node of a binary tree static class node { int data; node left; node right; node( int data) { this .data = data; left = null ; right = null ; } }; static int ans; // Function to find the sum of // all the nodes of BST static int findSum(node curr) { // If current node is // null if (curr == null ) return 0 ; // Else return curr.data + findSum(curr.left) + findSum(curr.right); } // Function to recursively check // if removing any edge divides tree // into two halves static int checkSum(node curr, int sum) { // Variable to store the // sum from left and right // child int l = 0 , r = 0 ; // Checking sum from left sub-tree // if its not null if (curr.left != null ) { l = checkSum(curr.left, sum); if ( 2 * l == sum) ans++; } // Checking sum from right sub-tree // if its not null if (curr.right != null ) { r = checkSum(curr.right, sum); if ( 2 * r == sum) ans++; } // Finding the sum of all the elements // of current node return l + r + curr.data; } // Function to return the number // of ways to remove an edge static int cntWays(node root) { // If root is null if (root == null ) return 0 ; // To store the final answer ans = 0 ; // Sum of all the elements of BST int sum = findSum(root); // If sum is odd then it won't be possible // to break it into two halves if (sum % 2 == 1 ) return 0 ; // Calling the checkSum function checkSum(root, sum); // Returning the final answer return ans; } // Driver code public static void main(String[] args) { node root = new node( 1 ); root.left = new node(- 1 ); root.right = new node(- 1 ); root.right.right = new node( 1 ); // Print the count of possible ways System.out.print(cntWays(root)); } } // This code is contributed by PrinciRaj1992 |
C#
// C# implementation of the approach using System; class GFG { // Node of a binary tree public class node { public int data; public node left; public node right; public node( int data) { this .data = data; left = null ; right = null ; } }; static int ans; // Function to find the sum of // all the nodes of BST static int findSum(node curr) { // If current node is // null if (curr == null ) return 0; // Else return curr.data + findSum(curr.left) + findSum(curr.right); } // Function to recursively check // if removing any edge divides tree // into two halves static int checkSum(node curr, int sum) { // Variable to store the // sum from left and right // child int l = 0, r = 0; // Checking sum from left sub-tree // if its not null if (curr.left != null ) { l = checkSum(curr.left, sum); if (2 * l == sum) ans++; } // Checking sum from right sub-tree // if its not null if (curr.right != null ) { r = checkSum(curr.right, sum); if (2 * r == sum) ans++; } // Finding the sum of all the elements // of current node return l + r + curr.data; } // Function to return the number // of ways to remove an edge static int cntWays(node root) { // If root is null if (root == null ) return 0; // To store the final answer ans = 0; // Sum of all the elements of BST int sum = findSum(root); // If sum is odd then it won't be possible // to break it into two halves if (sum % 2 == 1) return 0; // Calling the checkSum function checkSum(root, sum); // Returning the final answer return ans; } // Driver code public static void Main(String[] args) { node root = new node(1); root.left = new node(-1); root.right = new node(-1); root.right.right = new node(1); // Print the count of possible ways Console.Write(cntWays(root)); } } // This code is contributed by Princi Singh |
Javascript
<script> // javascript implementation of the approach // Node of a binary tree class node { constructor(val) { this .data = val; this .prev = null ; this .next = null ; } } var ans; // Function to find the sum of // all the nodes of BST function findSum( curr) { // If current node is // null if (curr == null ) return 0; // Else return curr.data + findSum(curr.left) + findSum(curr.right); } // Function to recursively check // if removing any edge divides tree // into two halves function checkSum( curr , sum) { // Variable to store the // sum from left and right // child var l = 0, r = 0; // Checking sum from left sub-tree // if its not null if (curr.left != null ) { l = checkSum(curr.left, sum); if (2 * l == sum) ans++; } // Checking sum from right sub-tree // if its not null if (curr.right != null ) { r = checkSum(curr.right, sum); if (2 * r == sum) ans++; } // Finding the sum of all the elements // of current node return l + r + curr.data; } // Function to return the number // of ways to remove an edge function cntWays( root) { // If root is null if (root == null ) return 0; // To store the final answer ans = 0; // Sum of all the elements of BST var sum = findSum(root); // If sum is odd then it won't be possible // to break it into two halves if (sum % 2 == 1) return 0; // Calling the checkSum function checkSum(root, sum); // Returning the final answer return ans; } // Driver code root = new node(1); root.left = new node(-1); root.right = new node(-1); root.right.right = new node(1); // Print the count of possible ways document.write(cntWays(root)); // This code contributed by Rajput-Ji </script> |
Python3
# Python3 implementation of the approach # Node of a binary tree class node: def __init__( self ,data): self .data = data self .left = None self .right = None # Function to find the sum of # all the nodes of BST def findSum(curr): # If current node is # null if (curr = = None ): return 0 # Else return curr.data + findSum(curr.left) + findSum(curr.right) # Function to recursively check # if removing any edge divides tree into # two halves def checkSum(curr, s): global ans # Variable to store the # s from left and right # child l = 0 ; r = 0 # Checking sum from left sub-tree # if its not null if (curr.left ! = None ): l = checkSum(curr.left, s) if ( 2 * l = = s): ans + = 1 # Checking sum from right sub-tree # if its not null if (curr.right ! = None ): r = checkSum(curr.right, s) if ( 2 * r = = s): ans + = 1 # Finding the sum of all the elements # of current node return l + r + curr.data # Function to return the number # of ways to remove an edge def cntWays(root): # If root is null if (root = = None ): return 0 # To store the final answer global ans ans = 0 # s of all the elements of BST s = findSum(root) # If s is odd then it won't be possible # to break it into two halves if (s % 2 ): return 0 # Calling the checkSum function checkSum(root, s) # Returning the final answer return ans # Driver code if __name__ = = '__main__' : root = node( 1 ) root.left = node( - 1 ) root.right = node( - 1 ) root.right.right = node( 1 ) # Print the count of possible ways print (cntWays(root)) |
1
Time complexity of this approach will be O(N) and space complexity will O(H) where “N” equals number of node in Binary tree and “H” equals height of the Binary Tree.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!