Friday, January 10, 2025
Google search engine
HomeData Modelling & AINumber of ways to distribute N Paper Set among M students

Number of ways to distribute N Paper Set among M students

Given N students and a total of M sets of question paper where M ? N. All the M sets are different and every sets is available in sufficient quantity. All the students are sitting in a single row. The task is to find the number of ways to distribute the question paper so that if any M consecutive students are selected then each student has a unique question paper set. The answer could be large, so print the answer modulo 109 + 7.
Example: 
 

Input: N = 2, M = 2 
Output:
(A, B) and (B, A) are the only possible ways.
Input: N = 15, M = 4 
Output: 24 
 

 

Approach: It can be observed that the number of ways are independent of N and only depend on M. First M students can be given M sets and then the same pattern can be repeated. The number of ways to distribute the question paper in this way is M!. For example, 
 

N = 6, M = 3 
A, B, C, A, B, C 
A, C, B, A, C, B 
B, C, A, B, C, A 
B, A, C, B, A, C 
C, A, B, C, A, B 
C, B, A, C, B, A 
 

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int MOD = 1000000007;
 
// Function to return n! % 1000000007
int factMod(int n)
{
 
    // To store the factorial
    long fact = 1;
 
    // Find the factorial
    for (int i = 2; i <= n; i++) {
        fact *= (i % MOD);
        fact %= MOD;
    }
 
    return fact;
}
 
// Function to return the
// count of possible ways
int countWays(int n, int m)
{
    return factMod(m);
}
 
// Driver code
int main()
{
    int n = 2, m = 2;
 
    cout << countWays(n, m);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
static int MOD = 1000000007;
 
// Function to return n! % 1000000007
static int factMod(int n)
{
 
    // To store the factorial
    long fact = 1;
 
    // Find the factorial
    for (int i = 2; i <= n; i++)
    {
        fact *= (i % MOD);
        fact %= MOD;
    }
    return (int)fact;
}
 
// Function to return the
// count of possible ways
static int countWays(int n, int m)
{
    return factMod(m);
}
 
// Driver code
public static void main(String args[])
{
    int n = 2, m = 2;
 
    System.out.print(countWays(n, m));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
MOD = 1000000007;
 
# Function to return n! % 1000000007
def factMod(n) :
 
    # To store the factorial
    fact = 1;
 
    # Find the factorial
    for i in range(2, n + 1) :
        fact *= (i % MOD);
        fact %= MOD;
 
    return fact;
 
# Function to return the
# count of possible ways
def countWays(n, m) :
 
    return factMod(m);
 
# Driver code
if __name__ == "__main__" :
 
    n = 2; m = 2;
 
    print(countWays(n, m));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
    static int MOD = 1000000007;
     
    // Function to return n! % 1000000007
    static int factMod(int n)
    {
        // To store the factorial
        int fact = 1;
     
        // Find the factorial
        for (int i = 2; i <= n; i++)
        {
            fact *= (i % MOD);
            fact %= MOD;
        }
        return fact;
    }
 
    // Function to return the
    // count of possible ways
    static int countWays(int n, int m)
    {
        return factMod(m);
    }
     
    // Driver code
    public static void Main()
    {
        int n = 2, m = 2;
        Console.Write(countWays(n, m));
    }
}
 
// This code is contributed by Sanjit Prasad


Javascript




<script>
// javascript implementation of the approach
     MOD = 1000000007;
 
    // Function to return n! % 1000000007
    function factMod(n) {
 
        // To store the factorial
        var fact = 1;
 
        // Find the factorial
        for (i = 2; i <= n; i++) {
            fact *= (i % MOD);
            fact %= MOD;
        }
        return parseInt( fact);
    }
 
    // Function to return the
    // count of possible ways
    function countWays(n , m) {
        return factMod(m);
    }
 
    // Driver code
     
        var n = 2, m = 2;
 
        document.write(countWays(n, m));
 
// This code contributed by aashish1995
</script>


Output: 

2

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments