Thursday, January 23, 2025
Google search engine
HomeData Modelling & AINumber of ways to cut a stick of length N into in...

Number of ways to cut a stick of length N into in even length at most K units long pieces

Given a rod of length N units, the task is to find the number of ways to cut the rod into parts such that the length of each part is even and each part is at most K units.

Examples:

Input: N = 6, K = 4 
Output:
Explanation: 
Rod of length 6 units needs to be into parts having length at most 4 units. Hence cut the rod in three ways: 
Way 1: 2 units + 2 units + 2 units 
Way 2: 2 units + 4 units 
Way 3: 4 units + 2 units

Input: N = 4, K = 2 
Output:
Explanation: 
Rod of length 4 units needs to be into parts having length at most 2 units. Hence cut the rod in 2 + 2 units. 

Approach: The idea is to use dynamic programming where the optimal sub-structure is that the length of each part should be even. Count all the way to cut the rod by calling the function recursively for a piece obtained after a cut.

Below is the implementation of the above approach:

C++14




// C++14 program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Recursive Function to count
// the total number of ways
int solve(int n, int k, int mod, int dp[])
{
    // Base case if no-solution exist
    if (n < 0)
        return 0;
 
    // Condition if a solution exist
    if (n == 0)
        return 1;
 
    // Check if already calculated
    if (dp[n] != -1)
        return dp[n];
 
    // Initialize counter
    int cnt = 0;
    for (int i = 2; i <= k; i += 2) {
        // Recursive call
        cnt = (cnt % mod
               + solve(n - i, k, mod, dp)
                     % mod)
              % mod;
    }
 
    // Store the answer
    dp[n] = cnt;
 
    // Return the answer
    return cnt;
}
 
// Driver code
int main()
{
 
    const int mod = 1e9 + 7;
    int n = 4, k = 2;
    int dp[n + 1];
    memset(dp, -1, sizeof(dp));
    int ans = solve(n, k, mod, dp);
    cout << ans << '\n';
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Recursive Function to count
// the total number of ways
static int solve(int n, int k, int mod, int dp[])
{
     
    // Base case if no-solution exist
    if (n < 0)
        return 0;
 
    // Condition if a solution exist
    if (n == 0)
        return 1;
 
    // Check if already calculated
    if (dp[n] != -1)
        return dp[n];
 
    // Initialize counter
    int cnt = 0;
    for(int i = 2; i <= k; i += 2)
    {
         
        // Recursive call
        cnt = (cnt % mod + solve(n - i, k, mod,
               dp) % mod) % mod;
    }
 
    // Store the answer
    dp[n] = cnt;
 
    // Return the answer
    return cnt;
}
 
// Driver code
public static void main(String[] args)
{
    int mod = (int)(1e9 + 7);
    int n = 4, k = 2;
     
    int []dp = new int[n + 1];
    for(int i = 0; i < n + 1; i++)
        dp[i] = -1;
         
    int ans = solve(n, k, mod, dp);
     
    System.out.println(ans);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the above approach
 
# Recursive function to count
# the total number of ways
def solve(n, k, mod, dp):
     
    # Base case if no-solution exist
    if (n < 0):
        return 0
 
    # Condition if a solution exist
    if (n == 0):
        return 1
 
    # Check if already calculated
    if (dp[n] != -1):
        return dp[n]
 
    # Initialize counter
    cnt = 0
    for i in range(2, k + 1, 2):
         
        # Recursive call
        cnt = ((cnt % mod +
                solve(n - i, k, mod, dp) %
                                    mod) % mod)
                                    
    # Store the answer
    dp[n] = cnt
 
    # Return the answer
    return int(cnt)
 
# Driver code
if __name__ == '__main__':
     
    mod = 1e9 + 7
    n = 4
    k = 2
     
    dp = [-1] * (n + 1)
    ans = solve(n, k, mod, dp)
     
    print(ans)
     
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Recursive function to count
// the total number of ways
static int solve(int n, int k, int mod, int []dp)
{
     
    // Base case if no-solution exist
    if (n < 0)
        return 0;
 
    // Condition if a solution exist
    if (n == 0)
        return 1;
 
    // Check if already calculated
    if (dp[n] != -1)
        return dp[n];
 
    // Initialize counter
    int cnt = 0;
    for(int i = 2; i <= k; i += 2)
    {
         
        // Recursive call
        cnt = (cnt % mod + solve(n - i, k, mod,
               dp) % mod) % mod;
    }
 
    // Store the answer
    dp[n] = cnt;
 
    // Return the answer
    return cnt;
}
 
// Driver code
public static void Main(String[] args)
{
    int mod = (int)(1e9 + 7);
    int n = 4, k = 2;
     
    int []dp = new int[n + 1];
    for(int i = 0; i < n + 1; i++)
        dp[i] = -1;
         
    int ans = solve(n, k, mod, dp);
     
    Console.WriteLine(ans);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Recursive Function to count
// the total number of ways
function solve(n, k, mod, dp)
{
       
    // Base case if no-solution exist
    if (n < 0)
        return 0;
   
    // Condition if a solution exist
    if (n == 0)
        return 1;
   
    // Check if already calculated
    if (dp[n] != -1)
        return dp[n];
   
    // Initialize counter
    let cnt = 0;
    for(let i = 2; i <= k; i += 2)
    {
           
        // Recursive call
        cnt = (cnt % mod + solve(n - i, k, mod,
               dp) % mod) % mod;
    }
   
    // Store the answer
    dp[n] = cnt;
   
    // Return the answer
    return cnt;
}
  
 
    // Driver Code
         
    let mod = (1e9 + 7);
    let n = 4, k = 2;
       
    let dp = new Array(n+1).fill(0);
    for(let i = 0; i < n + 1; i++)
        dp[i] = -1;
           
    let ans = solve(n, k, mod, dp);
       
    document.write(ans);
       
</script>


Output

1

Time complexity: O(n*k)
Auxiliary Space: O(n)

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a array DP of size n+1 to store the solution of the subproblems and initialize it with 0.
  • Initialize the table with base cases dp[0] = 1.
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP.
  • Return the final solution stored in dp[n].

Implementation :

C++




// C++ program for the above approach using DP tabulation
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the total number of ways
int countWays(int n, int k, int mod)
{
    // Create a DP table
    int dp[n + 1];
    memset(dp, 0, sizeof(dp));
    // Initialize DP table
    dp[0] = 1;
 
    // Fill the DP table
    for (int i = 1; i <= n; i++) {
        for (int j = 2; j <= k; j += 2) {
            if (i - j >= 0) {
                dp[i] = (dp[i] + dp[i - j]) % mod;
            }
        }
    }
 
    // Return the answer
    return dp[n];
}
 
// Driver Code
int main()
{
    const int mod = 1e9 + 7;
    int n = 4, k = 2;
    int ans = countWays(n, k, mod);
    cout << ans << '\n';
    return 0;
}
 
// this code is contributed by bhardwajji


Java




// Java program for the above approach using DP tabulation
import java.util.*;
 
class Main {
 
    // Function to count the total number of ways
    static int countWays(int n, int k, int mod)
    {
        // Create a DP table
        int[] dp = new int[n + 1];
        Arrays.fill(dp, 0);
        // Initialize DP table
        dp[0] = 1;
        // Fill the DP table
        for (int i = 1; i <= n; i++) {
            for (int j = 2; j <= k; j += 2) {
                if (i - j >= 0) {
                    dp[i] = (dp[i] + dp[i - j]) % mod;
                }
            }
        }
 
        // Return the answer
        return dp[n];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        final int mod = 1000000007;
        int n = 4, k = 2;
        int ans = countWays(n, k, mod);
        System.out.println(ans);
    }
}


C#




using System;
 
public class MainClass {
    // Function to count total number of ways
    static int CountWays(int n, int k, int mod)
    {
        // Create a DP table
        int[] dp = new int[n + 1];
        Array.Fill(dp, 0);
 
        // Initialize DP table
        dp[0] = 1;
 
        // Fill the DP table
        for (int i = 1; i <= n; i++) {
            for (int j = 2; j <= k; j += 2) {
                if (i - j >= 0) {
                    dp[i] = (dp[i] + dp[i - j]) % mod;
                }
            }
        }
 
        // Return the answer
        return dp[n];
    }
 
    // Driver Code
    public static void Main()
    {
        const int mod = 1000000007;
        int n = 4, k = 2;
        int ans = CountWays(n, k, mod);
        Console.WriteLine(ans);
    }
}


Python3




def countWays(n, k, mod):
    # Create a DP table
    dp = [0] * (n+1)
 
# Initialize DP table
    dp[0] = 1
 
# Fill the DP table
    for i in range(1, n+1):
        for j in range(2, k+1, 2):
            if i - j >= 0:
                dp[i] = (dp[i] + dp[i-j]) % mod
 
# Return the answer
    return dp[n]
 
mod = int(1e9 + 7)
n, k = 4, 2
ans = countWays(n, k, mod)
print(ans)


Output

1

Time complexity: O(n*k)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments