Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AINumber of Unicolored Paths between two nodes

Number of Unicolored Paths between two nodes

Given an undirected colored graph(edges are colored), with a source vertex ‘s’ and a destination vertex ‘d’, print number of paths which from given ‘s’ to ‘d’ such that the path is UniColored(edges in path having same color).

The edges are colored, here Colors are represented with numbers. At maximum, number of different colors will be number of edges. 

Capture

Input : Graph
       u, v, color
        1, 2, 1
        1, 3, 2
        2, 3, 3
        2, 4, 2
        2, 5, 4
        3, 5, 3
        4, 5, 2
source = 2   destination = 5             

Output : 3
Explanation : There are three paths from 2 to 5
2 -> 5 with color red
2 -> 3 - > 5 with color sky blue
2 -> 4 - > 5  with color green

Algorithm: 1. Do dfs traversal on the neighbour nodes of the source node. 2. The color between source node and neighbour nodes is known, if the DFS traversal also has the same color, proceed, else stop going on that path. 3. After reaching the destination node, increment count by 1. 

NOTE: Number of Colors will always be less than a number of edges. 

Implementation:

C++




// C++ code to find unicolored paths
#include <bits/stdc++.h>
using namespace std;
 
const int MAX_V = 100;
 
int color[MAX_V];
bool vis[MAX_V];
 
// Graph class represents an undirected graph
// using adjacency list representation
class Graph
{
    // vertices, edges, adjacency list
    int V;
    int E;
    vector<pair<int, int> > adj[MAX_V];
 
    // function used by UniColorPaths
    // DFS traversal o from x to y
    void dfs(int x, int y, int z);
 
// Constructor
public:
    Graph(int V, int E);
 
    // function to add an edge to graph
    void addEdge(int v, int w, int z);
 
    // finds paths between a and b having
    // same color edges
    int UniColorPaths(int a, int b);
};
 
Graph::Graph(int V, int E)
{
    this -> V = V;
    this -> E = E;
}
 
void Graph::addEdge(int a, int b, int c)
{
    adj[a].push_back({b, c}); // Add b to a’s list.
    adj[b].push_back({a, c}); // Add c to b’s list.
}
 
void Graph::dfs(int x, int y, int col)
{
    if (vis[x])
        return;
    vis[x] = 1;
 
    // mark this as a possible color to reach s to d
    if (x == y)
    {
        color[col] = 1;
        return;
    }
 
    // if the next edge is also of same color
    for (int i = 0; i < int(adj[x].size()); i++)
        if (adj[x][i].second == col)
            dfs(adj[x][i].first, y, col);
}
 
// function that finds paths between a and b
// such that all edges are same colored
// It uses recursive dfs()
int Graph::UniColorPaths(int a, int b)
{
 
    // dfs on nodes directly connected to source
    for (int i = 0; i < int(adj[a].size()); i++)
    {
        dfs(a, b, adj[a][i].second);
 
        // to visit again visited nodes
        memset(vis, 0, sizeof(vis));
    }
 
    int cur = 0;
    for (int i = 0; i <= E; i++)
        cur += color[i];
 
    return (cur);
}
 
// driver code
int main()
{
    // Create a graph given in the above diagram
    Graph g(5, 7);
    g.addEdge(1, 2, 1);
    g.addEdge(1, 3, 2);
    g.addEdge(2, 3, 3);
    g.addEdge(2, 4, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 5, 3);
    g.addEdge(4, 5, 2);
 
    int s = 2; // source
    int d = 5; // destination
 
    cout << "Number of unicolored paths : ";
    cout << g.UniColorPaths(s, d) << endl;
    return 0;
}


Java




import java.util.ArrayList;
import java.util.Arrays;
 
class Graph {
 
    int MAX_V = 100;
    int[] color = new int[MAX_V];
    int[] vis = new int[MAX_V];
 
    int V, E;
    ArrayList<ArrayList<Pair>> adj = new ArrayList<ArrayList<Pair>>();
 
    public Graph(int V, int E) {
        this.V = V;
        this.E = E;
        for (int i = 0; i <= MAX_V; i++) {
            adj.add(new ArrayList<Pair>());
        }
    }
 
    // Function used by UniColorPaths
    // DFS traversal o from x to y
    void dfs(int x, int y, int col) {
 
        if (vis[x] == 1) {
            return;
        }
        vis[x] = 1;
 
        // mark this as a possible color to reach s to d
        if (x == y) {
            color[col] = 1;
            return;
        }
 
        // if the next edge is also of same color
        for (int i = 0; i < adj.get(x).size(); i++) {
            if (adj.get(x).get(i).second == col) {
                dfs(adj.get(x).get(i).first, y, col);
            }
        }
    }
 
    void addEdge(int a, int b, int c) {
        adj.get(a).add(new Pair(b, c)); // Add b to a’s list.
        adj.get(b).add(new Pair(a, c)); // Add c to b’s list.
    }
 
    // Function that finds paths between a
    // and b such that all edges are same
    // colored. It uses recursive dfs()
    int UniColorPaths(int a, int b) {
 
        Arrays.fill(vis, 0);
        Arrays.fill(color, 0);
 
        // dfs on nodes directly connected to source
        for (int i = 0; i < adj.get(a).size(); i++) {
            dfs(a, b, adj.get(a).get(i).second);
            // to visit again visited nodes
            Arrays.fill(vis, 0);
        }
        int cur = 0;
        for (int i = 0; i <= E; i++) {
            cur += color[i];
        }
        return cur;
    }
 
    class Pair {
        int first, second;
 
        Pair(int first, int second) {
            this.first = first;
            this.second = second;
        }
    }
}
 
public class Main {
 
    public static void main(String[] args) {
        // Create a graph given in the above diagram
        Graph g = new Graph(5, 7);
        g.addEdge(1, 2, 1);
        g.addEdge(1, 3, 2);
        g.addEdge(2, 3, 3);
        g.addEdge(2, 4, 2);
        g.addEdge(2, 5, 4);
        g.addEdge(3, 5, 3);
        g.addEdge(4, 5, 2);
 
        int s = 2; // source
        int d = 5; // destination
 
        System.out.print("Number of unicolored paths : ");
        System.out.println(g.UniColorPaths(s, d));
    }
}


Python3




# Python3 code to find unicolored paths
 
MAX_V = 100
color = [0] * MAX_V
vis = [0] * MAX_V
 
# Graph class represents a undirected graph
# using adjacency list representation
class Graph:
  
    def __init__(self, V, E):
        self.V = V
        self.E = E
        self.adj = [[] for i in range(MAX_V)]
     
    # Function used by UniColorPaths
    # DFS traversal o from x to y
    def dfs(self, x, y, col):
         
        if vis[x]:
            return
        vis[x] = 1
     
        # mark this as a possible color to reach s to d
        if x == y:
            color[col] = 1
            return
          
        # if the next edge is also of same color
        for i in range(0, len(self.adj[x])):
            if self.adj[x][i][1] == col:
                self.dfs(self.adj[x][i][0], y, col)
 
    def addEdge(self, a, b, c):
      
        self.adj[a].append((b, c)) # Add b to a’s list.
        self.adj[b].append((a, c)) # Add c to b’s list.
 
    # Function that finds paths between a
    # and b such that all edges are same
    # colored. It uses recursive dfs()
    def UniColorPaths(self, a, b):
     
        global vis
         
        # dfs on nodes directly connected to source
        for i in range(0, len(self.adj[a])):
          
            self.dfs(a, b, self.adj[a][i][1])
     
            # to visit again visited nodes
            vis = [0] * len(vis)
          
        cur = 0
        for i in range(0, self.E + 1):
            cur += color[i]
     
        return cur
 
# Driver code
if __name__ == "__main__":
  
    # Create a graph given in the above diagram
    g = Graph(5, 7)
    g.addEdge(1, 2, 1)
    g.addEdge(1, 3, 2)
    g.addEdge(2, 3, 3)
    g.addEdge(2, 4, 2)
    g.addEdge(2, 5, 4)
    g.addEdge(3, 5, 3)
    g.addEdge(4, 5, 2)
 
    s = 2 # source
    d = 5 # destination
 
    print("Number of unicolored paths : ", end = "")
    print(g.UniColorPaths(s, d))
 
# This code is contributed by Rituraj Jain


C#




// C# code to find unicolored paths
using System;
using System.Collections.Generic;
using System.Collections;
using System.Linq;
 
static class Globals
{
    // global int
    public static int MAX_V = 100;
    public static int[] color = new int[MAX_V];
    public static int[] vis = new int[MAX_V];
}
 
// Graph class represents an undirected graph
// using adjacency list representation
class Graph
{
    // vertices, edges, adjacency list
    public int V;
    public int E;
    public List<KeyValuePair<int,int>>[] adj;
 
    public Graph(int v, int e)
    {
        V = v;
        E = e;
        adj = new List<KeyValuePair<int,int>>[Globals.MAX_V];
        for (int i = 0; i < adj.Length; ++i)
        {
            adj[i] = new List<KeyValuePair<int,int>>();
        }
    }  
     
    // Appends a new Edge to the linked list
    public void addEdge(int a, int b, int c)
    {
        adj[a].Add(new KeyValuePair<int, int>(b, c));
        adj[b].Add(new KeyValuePair<int,int> (a, c));
    }
     
     
    public void dfs(int x, int y, int col)
    {
        if (Globals.vis[x] == 1)
            return;
        Globals.vis[x] = 1;
 
        // mark this as a possible color to reach s to d
        if (x == y)
        {
            Globals.color[col] = 1;
            return;
        }
 
        // if the next edge is also of same color
        for (int i = 0; i < adj[x].Count; i++)
            if (adj[x][i].Value == col)
                dfs(adj[x][i].Key, y, col);
    }
     
    // function that finds paths between a and b
    // such that all edges are same colored
    // It uses recursive dfs()
    public int UniColorPaths(int a, int b)
    {
 
        // dfs on nodes directly connected to source
        for (int i = 0; i < adj[a].Count; i++)
        {
            dfs(a, b, adj[a][i].Value);
 
            // to visit again visited nodes
            for(int indx = 0; indx < Globals.MAX_V; indx++){
                Globals.vis[indx] = 0;
            }
        }
 
        int cur = 0;
        for (int i = 0; i <= E; i++)
            cur += Globals.color[i];
 
        return (cur);
    }
}
 
 
class HelloWorld {
    static void Main() {
        // Create a graph given in the above diagram
        Graph g = new Graph(5, 7);
        g.addEdge(1, 2, 1);
        g.addEdge(1, 3, 2);
        g.addEdge(2, 3, 3);
        g.addEdge(2, 4, 2);
        g.addEdge(2, 5, 4);
        g.addEdge(3, 5, 3);
        g.addEdge(4, 5, 2);
 
        int s = 2; // source
        int d = 5; // destination
 
        Console.Write("Number of unicolored paths : ");
        Console.WriteLine(g.UniColorPaths(s, d));
    }
}
 
// The code is contributed by Arushi Jindal.


Javascript




// Javascript code to find unicolored paths
 
const MAX_V = 100;
let color = new Array(MAX_V).fill(0);
let vis = new Array(MAX_V).fill(0);
// Graph class represents an undirected graph
// using adjacency list representation
class Graph {
// Constructor
  constructor(V, E) {
    // vertices, edges, adjacency list
    this.V = V;
    this.E = E;
    this.adj = Array.from({ length: MAX_V }, () => []);
  }
  // function used by UniColorPaths
    // DFS traversal o from x to y
  dfs(x, y, col) {
    if (vis[x]) {
      return;
    }
    vis[x] = 1;
 
    if (x === y) {
      color[col] = 1;
      return;
    }
 
    for (let i = 0; i < this.adj[x].length; i++) {
      if (this.adj[x][i][1] === col) {
        this.dfs(this.adj[x][i][0], y, col);
      }
    }
  }
 
  addEdge(a, b, c) {
    this.adj[a].push([b, c]); // Add b to a’s list.
    this.adj[b].push([a, c]);// Add c to b’s list.
  }
// function that finds paths between a and b
// such that all edges are same colored
// It uses recursive dfs()
  UniColorPaths(a, b) {
    for (let i = 0; i < this.adj[a].length; i++) {
      this.dfs(a, b, this.adj[a][i][1]);
      vis = new Array(MAX_V).fill(0);
    }
 
    let cur = 0;
    for (let i = 0; i <= this.E; i++) {
      cur += color[i];
    }
 
    return cur;
  }
}
 
// driver code
 
   // Create a graph given in the above diagram
  let g = new Graph(5, 7);
  g.addEdge(1, 2, 1);
  g.addEdge(1, 3, 2);
  g.addEdge(2, 3, 3);
  g.addEdge(2, 4, 2);
  g.addEdge(2, 5, 4);
  g.addEdge(3, 5, 3);
  g.addEdge(4, 5, 2);
 
  let s = 2;
  let d = 5;
 
  console.log("Number of unicolored paths: ", g.UniColorPaths(s, d));


Output

Number of unicolored paths : 3

Time Complexity : O(E * (E + V))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments