Monday, January 13, 2025
Google search engine
HomeData Modelling & AINumber of Subarrays with positive product

Number of Subarrays with positive product

Given an array arr[] of N integers, the task is to find the count of subarrays with positive product.
Examples: 
 

Input: arr[] = {-1, 2, -2} 
Output:
Subarrays with positive product are {2} and {-1, 2, -2}.
Input: arr[] = {5, -4, -3, 2, -5} 
Output:
 

 

Approach: The approach to find the subarrays with negative product has been discussed in this article. If cntNeg is the count of negative product subarrays and total is the count of all possible subarrays of the given array then the count of positive product subarrays will be cntPos = total – cntNeg.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// subarrays with negative product
int negProdSubArr(int arr[], int n)
{
    int positive = 1, negative = 0;
    for (int i = 0; i < n; i++) {
 
        // Replace current element with 1
        // if it is positive else replace
        // it with -1 instead
        if (arr[i] > 0)
            arr[i] = 1;
        else
            arr[i] = -1;
 
        // Take product with previous element
        // to form the prefix product
        if (i > 0)
            arr[i] *= arr[i - 1];
 
        // Count positive and negative elements
        // in the prefix product array
        if (arr[i] == 1)
            positive++;
        else
            negative++;
    }
 
    // Return the required count of subarrays
    return (positive * negative);
}
 
// Function to return the count of
// subarrays with positive product
int posProdSubArr(int arr[], int n)
{
 
    // Total subarrays possible
    int total = (n * (n + 1)) / 2;
 
    // Count to subarrays with negative product
    int cntNeg = negProdSubArr(arr, n);
 
    // Return the count of subarrays
    // with positive product
    return (total - cntNeg);
}
 
// Driver code
int main()
{
    int arr[] = { 5, -4, -3, 2, -5 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << posProdSubArr(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// Function to return the count of
// subarrays with negative product
static int negProdSubArr(int arr[], int n)
{
    int positive = 1, negative = 0;
    for (int i = 0; i < n; i++)
    {
 
        // Replace current element with 1
        // if it is positive else replace
        // it with -1 instead
        if (arr[i] > 0)
            arr[i] = 1;
        else
            arr[i] = -1;
 
        // Take product with previous element
        // to form the prefix product
        if (i > 0)
            arr[i] *= arr[i - 1];
 
        // Count positive and negative elements
        // in the prefix product array
        if (arr[i] == 1)
            positive++;
        else
            negative++;
    }
 
    // Return the required count of subarrays
    return (positive * negative);
}
 
// Function to return the count of
// subarrays with positive product
static int posProdSubArr(int arr[], int n)
{
 
    // Total subarrays possible
    int total = (n * (n + 1)) / 2;
 
    // Count to subarrays with negative product
    int cntNeg = negProdSubArr(arr, n);
 
    // Return the count of subarrays
    // with positive product
    return (total - cntNeg);
}
 
// Driver code
public static void main (String[] args)
{
    int arr[] = { 5, -4, -3, 2, -5 };
    int n = arr.length;
 
    System.out.println(posProdSubArr(arr, n));
}
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the count of
# subarrays with negative product
def negProdSubArr(arr, n):
 
    positive = 1
 
    negative = 0
 
    for i in range(n):
 
        # Replace current element with 1
        # if it is positive else replace
        # it with -1 instead
        if (arr[i] > 0):
 
            arr[i] = 1
 
        else:
 
            arr[i] = -1
 
        # Take product with previous element
        # to form the prefix product
        if (i > 0):
 
            arr[i] *= arr[i - 1]
 
        # Count positive and negative elements
        # in the prefix product array
        if (arr[i] == 1):
 
            positive += 1
 
        else:
 
            negative += 1
 
    # Return the required count of subarrays
    return (positive * negative)
 
# Function to return the count of
# subarrays with positive product
def posProdSubArr(arr, n):
 
    total = (n * (n + 1)) / 2;
 
    # Count to subarrays with negative product
    cntNeg = negProdSubArr(arr, n);
 
    # Return the count of subarrays
    # with positive product
    return (total - cntNeg);
 
# Driver code
arr = [5, -4, -3, 2, -5]
n = len(arr)
print(posProdSubArr(arr, n))
 
# This code is contributed by Mehul Bhutalia


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the count of
// subarrays with negative product
static int negProdSubArr(int []arr, int n)
{
    int positive = 1, negative = 0;
    for (int i = 0; i < n; i++)
    {
 
        // Replace current element with 1
        // if it is positive else replace
        // it with -1 instead
        if (arr[i] > 0)
            arr[i] = 1;
        else
            arr[i] = -1;
 
        // Take product with previous element
        // to form the prefix product
        if (i > 0)
            arr[i] *= arr[i - 1];
 
        // Count positive and negative elements
        // in the prefix product array
        if (arr[i] == 1)
            positive++;
        else
            negative++;
    }
 
    // Return the required count of subarrays
    return (positive * negative);
}
 
// Function to return the count of
// subarrays with positive product
static int posProdSubArr(int []arr, int n)
{
 
    // Total subarrays possible
    int total = (n * (n + 1)) / 2;
 
    // Count to subarrays with negative product
    int cntNeg = negProdSubArr(arr, n);
 
    // Return the count of subarrays
    // with positive product
    return (total - cntNeg);
}
 
// Driver code
public static void Main (String[] args)
{
    int []arr = { 5, -4, -3, 2, -5 };
    int n = arr.Length;
 
    Console.WriteLine(posProdSubArr(arr, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the count of
// subarrays with negative product
function negProdSubArr(arr, n)
{
    let positive = 1, negative = 0;
    for (let i = 0; i < n; i++)
    {
 
        // Replace current element with 1
        // if it is positive else replace
        // it with -1 instead
        if (arr[i] > 0)
            arr[i] = 1;
        else
            arr[i] = -1;
 
        // Take product with previous element
        // to form the prefix product
        if (i > 0)
            arr[i] *= arr[i - 1];
 
        // Count positive and negative elements
        // in the prefix product array
        if (arr[i] == 1)
            positive++;
        else
            negative++;
    }
 
    // Return the required count of subarrays
    return (positive * negative);
}
 
// Function to return the count of
// subarrays with positive product
function posProdSubArr(arr, n)
{
 
    // Total subarrays possible
    let total = parseInt((n * (n + 1)) / 2);
 
    // Count to subarrays with negative product
    let cntNeg = negProdSubArr(arr, n);
 
    // Return the count of subarrays
    // with positive product
    return (total - cntNeg);
}
 
// Driver code
    let arr = [ 5, -4, -3, 2, -5 ];
    let n = arr.length;
 
    document.write(posProdSubArr(arr, n));
 
// This code is contributed by rishavmahato348.
</script>


Output: 

7

 

Time Complexity: O(n)

Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments