Saturday, January 11, 2025
Google search engine
HomeData Modelling & AINumber of Positions to partition the string such that atleast m characters...

Number of Positions to partition the string such that atleast m characters with same frequency are present in each substring

Given a string str of lowercase English alphabets and an integer m. The task is to count how many positions are there in the string such that if you partition the string into two non-empty sub-strings, there are at least m characters with the same frequency in both the sub-strings. 
The characters need to be present in the string str.
Examples: 
 

Input: str = “aabbccaa”, m = 2 
Output:
The string has length 8, so there are 7 positions available to perform the partition. 
i.e. a|a|b|b|c|c|a|a 
Only two partitions are possible which satisfy the given constraints. 
aab|bccaa – On the left half of the separator, ‘a’ has frequency 2 and ‘b’ has frequency 1 
which is same as that of the right half. 
aabbc|caa – On the left half of the separator, ‘a’ has frequency 2 and ‘c’ has frequency 1 
which is same as that of the right half.
Input: str = “aabbaa”, m = 2 
Output:
 

 

Approach: For each partition position, calculate the frequencies of each of the characters of the string in both the partitions. Then calculate the number of characters having same frequency in both partitions. If the count of such characters is at least m then add 1 to the required count of partitions.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the number of ways
// to partition the given so that the
// given condition is satisfied
int countWays(string str, int m)
{
    // Hashset to store unique characters
    // in the given string
    set<char> s;
    for (int i = 0; i < str.length(); i++)
        s.insert(str[i]);
 
    // To store the number of ways
    // to partition the string
    int result = 0;
 
    for (int i = 1; i < str.length(); i++)
    {
        // Hashmaps to store frequency of characters
        // of both the partitions
        map<char, int> first_map, second_map;
 
        // Iterate in the first partition
        for (int j = 0; j < i; j++)
 
            // If character already exists in the hashmap
            // then increase it's frequency
            first_map[str[j]]++;
 
        // Iterate in the second partition
        for (int k = 0; k < str.length(); k++)
 
            // If character already exists in the hashmap
            // then increase it's frequency
            second_map[str[k]]++;
 
        // Iterator for HashSet
        set<char>::iterator itr = s.begin();
 
        // To store the count of characters that have
        // equal frequencies in both the partitions
        int total_count = 0;
        while (++itr != s.end())
        {
            // first_count and second_count keeps track
            // of the frequencies of each character
            int first_count = 0, second_count = 0;
            char ch = *(itr);
 
            // Frequency of the character
            // in the first partition
            if (first_map.find(ch) != first_map.end())
                first_count = first_map[ch];
 
            // Frequency of the character
            // in the second partition
            if (second_map.find(ch) != second_map.end())
                second_count = second_map[ch];
 
            // Check if frequency is same
            // in both the partitions
            if (first_count == second_count &&
                first_count != 0)
                total_count += 1;
        }
 
        // Check if the condition is satisfied
        // for the current partition
        if (total_count >= m)
            result += 1;
    }
    return result;
}
 
// Driver code
int main(int argc, char const *argv[])
{
    string str = "aabbccaa";
    int m = 2;
    cout << countWays(str, m) << endl;
    return 0;
}
 
// This code is contributed by
// sanjeev2552


Java




// Java implementation of the approach
import java.util.*;
 
class GFG {
 
    // Function to return the number of ways
    // to partition the given so that the
    // given condition is satisfied
    static int countWays(String str, int m)
    {
 
        // Hashset to store unique characters
        // in the given string
        HashSet<Character> set = new HashSet<Character>();
        for (int i = 0; i < str.length(); i++)
            set.add(str.charAt(i));
 
        // To store the number of ways
        // to partition the string
        int result = 0;
 
        for (int i = 1; i < str.length(); i++) {
 
            // Hashmaps to store frequency of characters
            // of both the partitions
            HashMap<Character, Integer> first_map
                = new HashMap<Character, Integer>();
            HashMap<Character, Integer> second_map
                = new HashMap<Character, Integer>();
 
            // Iterate in the first partition
            for (int j = 0; j < i; j++) {
 
                // If character already exists in the hashmap
                // then increase it's frequency
                if (first_map.containsKey(str.charAt(j)))
                    first_map.put(str.charAt(j),
                                  (first_map.get(str.charAt(j)) + 1));
 
                // Else create an entry for it in the Hashmap
                else
                    first_map.put(str.charAt(j), 1);
            }
 
            // Iterate in the second partition
            for (int k = i; k < str.length(); k++) {
 
                // If character already exists in the hashmap
                // then increase it's frequency
                if (second_map.containsKey(str.charAt(k)))
                    second_map.put(str.charAt(k),
                                   (second_map.get(str.charAt(k)) + 1));
 
                // Else create an entry for it in the Hashmap
                else
                    second_map.put(str.charAt(k), 1);
            }
 
            // Iterator for HashSet
            Iterator itr = set.iterator();
 
            // To store the count of characters that have
            // equal frequencies in both the partitions
            int total_count = 0;
 
            while (itr.hasNext()) {
 
                // first_count and second_count keeps track
                // of the frequencies of each character
                int first_count = 0, second_count = 0;
                char ch = (char)itr.next();
 
                // Frequency of the character
                // in the first partition
                if (first_map.containsKey(ch))
                    first_count = first_map.get(ch);
 
                // Frequency of the character
                // in the second partition
                if (second_map.containsKey(ch))
                    second_count = second_map.get(ch);
 
                // Check if frequency is same in both the partitions
                if (first_count == second_count && first_count != 0)
                    total_count += 1;
            }
 
            // Check if the condition is satisfied
            // for the current partition
            if (total_count >= m)
                result += 1;
        }
 
        return result;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String str = "aabbccaa";
        int m = 2;
        System.out.println(countWays(str, m));
    }
}


Python3




# Python3 implementation of the approach
from collections import defaultdict
 
# Function to return the number of ways
# to partition the given so that the
# given condition is satisfied
def countWays(string, m):
 
    # Hashset to store unique
    # characters in the given string
    Set = set()
    for i in range(0, len(string)):
        Set.add(string[i])
 
    # To store the number of ways
    # to partition the string
    result = 0
 
    for i in range(1, len(string)):
 
        # Hashmaps to store frequency of
        # characters of both the partitions
        first_map = defaultdict(lambda:0)
        second_map = defaultdict(lambda:0)
 
        # Iterate in the first partition
        for j in range(0, i):
 
            first_map[string[j]] += 1
         
        # Iterate in the second partition
        for k in range(i, len(string)):
 
            second_map[string[k]] += 1
         
        # To store the count of characters that have
        # equal frequencies in both the partitions
        total_count = 0
 
        for ch in Set:
 
            # first_count and second_count keeps track
            # of the frequencies of each character
            first_count, second_count = 0, 0
 
            # Frequency of the character
            # in the first partition
            if ch in first_map:
                first_count = first_map[ch]
 
            # Frequency of the character
            # in the second partition
            if ch in second_map:
                second_count = second_map[ch]
 
            # Check if frequency is same in both the partitions
            if first_count == second_count and first_count != 0:
                total_count += 1
         
        # Check if the condition is satisfied
        # for the current partition
        if total_count >= m:
            result += 1
     
    return result
 
# Driver code
if __name__ == "__main__":
 
    string = "aabbccaa"
    m = 2
    print(countWays(string, m))
     
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
public class GFG {
  
    // Function to return the number of ways
    // to partition the given so that the
    // given condition is satisfied
    static int countWays(String str, int m)
    {
  
        // Hashset to store unique characters
        // in the given string
        HashSet<char> set = new HashSet<char>();
        for (int i = 0; i < str.Length; i++)
            set.Add(str[i]);
  
        // To store the number of ways
        // to partition the string
        int result = 0;
  
        for (int i = 1; i < str.Length; i++) {
  
            // Hashmaps to store frequency of characters
            // of both the partitions
            Dictionary<char, int> first_map
                = new Dictionary<char, int>();
            Dictionary<char, int> second_map
                = new Dictionary<char, int>();
  
            // Iterate in the first partition
            for (int j = 0; j < i; j++) {
  
                // If character already exists in the hashmap
                // then increase it's frequency
                if (first_map.ContainsKey(str[j]))
                    first_map[str[j]] =
                                  (first_map[str[j]] + 1);
  
                // Else create an entry for it in the Hashmap
                else
                    first_map.Add(str[j], 1);
            }
  
            // Iterate in the second partition
            for (int k = i; k < str.Length; k++) {
  
                // If character already exists in the hashmap
                // then increase it's frequency
                if (second_map.ContainsKey(str[k]))
                    second_map[str[k]] =
                                   (second_map[str[k]] + 1);
  
                // Else create an entry for it in the Hashmap
                else
                    second_map.Add(str[k], 1);
            }
  
  
            // To store the count of characters that have
            // equal frequencies in both the partitions
            int total_count = 0;
             // Iterator for HashSet
            foreach (int itr in set) {
  
                // first_count and second_count keeps track
                // of the frequencies of each character
                int first_count = 0, second_count = 0;
                char ch = (char)itr;
  
                // Frequency of the character
                // in the first partition
                if (first_map.ContainsKey(ch))
                    first_count = first_map[ch];
  
                // Frequency of the character
                // in the second partition
                if (second_map.ContainsKey(ch))
                    second_count = second_map[ch];
  
                // Check if frequency is same in both the partitions
                if (first_count == second_count && first_count != 0)
                    total_count += 1;
            }
  
            // Check if the condition is satisfied
            // for the current partition
            if (total_count >= m)
                result += 1;
        }
  
        return result;
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        String str = "aabbccaa";
        int m = 2;
        Console.WriteLine(countWays(str, m));
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the number of ways
// to partition the given so that the
// given condition is satisfied
function countWays(str, m)
{
    // Hashset to store unique characters
    // in the given string
    var s = new Set();
    for (var i = 0; i < str.length; i++)
        s.add(str[i]);
 
    // To store the number of ways
    // to partition the string
    var result = 0;
 
    for (var i = 1; i < str.length; i++)
    {
        // Hashmaps to store frequency of characters
        // of both the partitions
        var first_map = new Map(), second_map = new Map();
 
        // Iterate in the first partition
        for (var j = 0; j < i; j++)
 
            // If character already exists in the hashmap
            // then increase it's frequency
            if(first_map.has(str[j]))
                first_map.set(str[j], first_map.get(str[j])+1)
            else
                first_map.set(str[j], 1)
 
        // Iterate in the second partition
        for (var k = 0; k < str.length; k++)
 
            // If character already exists in the hashmap
            // then increase it's frequency
            if(second_map.has(str[k]))
                second_map.set(str[k], second_map.get(str[k])+1)
            else
                second_map.set(str[k], 1)
 
 
        // To store the count of characters that have
        // equal frequencies in both the partitions
        var total_count = 0;
        s.forEach(itr => {
             
            // first_count and second_count keeps track
            // of the frequencies of each character
            var first_count = 0, second_count = 0;
            var ch = itr;
 
            // Frequency of the character
            // in the first partition
            if (first_map.has(ch))
                first_count = first_map.get(ch);
 
            // Frequency of the character
            // in the second partition
            if (second_map.has(ch))
                second_count = second_map.get(ch);
 
            // Check if frequency is same
            // in both the partitions
            if (first_count == second_count &&
                first_count != 0)
                total_count += 1;
        });
 
        // Check if the condition is satisfied
        // for the current partition
        if (total_count >= m)
            result += 1;
    }
    return result;
}
 
// Driver code
var str = "aabbccaa";
var m = 2;
document.write( countWays(str, m));
 
// This code is contributed by itsok.
</script>


Output: 

2

 

Time Complexity: O(n*n*log(n)), as nested loops are used for iteration
Auxiliary Space: O(n), as extra space of size n is used to make a set and map

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments