Given two 2D arrays rectangle[][] and triangle[][], representing the coordinates of vertices of a rectangle and a triangle respectively, and another array points[][] consisting of N coordinates, the task is to count the number of points that lies inside both the rectangle and the triangle.
Examples:
Input: rectangle[][] = {{1, 1}, {6, 1}, {6, 6}, {1, 6}}, triangle[][] = {{4, 4}, {0, 4}, {0, -2}}, points[][] = {{6, 5}, {2, 2}, {2, 1}, {5, 5}}
Output: 2
Explanation:From the above image, it is clear that the coordinates (2, 1) and (2, 2) lie inside both the given rectangle and triangle.
Therefore, the count is 2.
Input: rectangle[][] = {{-2, -2}, {2, -2}, {2, 2}, {-2, 2}}, triangle[][] = {{0, 0}, {1, 1}, {-1, -1}}, points[][] = {{0, 2}, {-2, -2}, {2, -2}}
Output: 2
Approach: The given problem can be solved based on the following observation:
Any three vertices of a rectangle can be connected to form a triangle.
Therefore, the number of triangles possible from a given rectangle is 4.
Therefore, to solve the problem, the idea is to check if the given point lies inside the given triangle and any one of the four triangles obtained from the rectangle or not. Follow the steps below to solve the problem:
- Initialize four lists, say triangle1, triangle2, triangle3 and triangle4, to store the coordinates of the vertices of the four triangles possible from a rectangle.
- Populate the above initialized lists by considering three vertices of the rectangle at a time.
- Initialize a variable, say ans as 0, to store the number of points that lies inside the triangle as well as the rectangle.
- Traverse the array points[][] and check if there exists any point that lies inside any of the four obtained triangles as well as inside the given triangle or not. If found to be true, then increment ans by 1.
- After completing the above steps, print the value of ans as the resultant count.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate area of a triangle int getArea( int x1, int y1, int x2, int y2, int x3, int y3) { // Return the resultant area return abs ((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2); } // Function to check if a point // lies inside a triangle or not int isInside(vector<vector< int >> triangle, vector< int > point) { vector< int > A = triangle[0]; vector< int > B = triangle[1]; vector< int > C = triangle[2]; int x = point[0]; int y = point[1]; // Calculate area of triangle ABC int ABC = getArea(A[0], A[1], B[0], B[1], C[0], C[1]); // Calculate area of triangle // formed by connecting B, C, point int BPC = getArea(x, y, B[0], B[1], C[0], C[1]); // Calculate area of triangle // formed by connecting A, C, point int APC = getArea(A[0], A[1], x, y, C[0], C[1]); // Calculate area of triangle // formed by connecting A, B, point int APB = getArea(A[0], A[1], B[0], B[1], x, y); // Check if the sum of the areas of // above three triangles the same as ABC return ABC == (APC + APB + BPC); } // Function to count the number of points // lying inside a triangle & rectangle void countPoints(vector<vector< int >> rectangle,vector<vector< int >> triangle,vector<vector< int >> points){ // Stores the coordinates of the // vertices of the triangles int n = rectangle.size(); vector<vector< int >> triangle1; for ( int i = 1; i < n; i++) triangle1.push_back(rectangle[i]); vector<vector< int >> triangle2; for ( int i = 0; i < 3; i++) triangle2.push_back(rectangle[i]); vector<vector< int >> triangle3; for ( int i = 0; i < 2; i++) triangle3.push_back(rectangle[i]); triangle3.push_back(rectangle[3]); vector<vector< int >> triangle4; for ( int i = n - 2; i < n; i++) triangle4.push_back(rectangle[i]); triangle4.push_back(rectangle[0]); // Stores the number of points lying // inside the triangle and rectangle int ans = 0; // Traverse the array of points for ( auto point:points) { // Stores whether the current point // lies inside triangle1 or not int condOne = isInside(triangle1, point); // Stores whether the current point // lies inside triangle2 or not int condTwo = isInside(triangle2, point); // Stores whether the current point // lies inside triangle3 or not int condThree = isInside(triangle3, point); // Stores whether the current point // lies inside triangle4 or not int condFour = isInside(triangle4, point); // Stores whether the current point // lies inside given triangle or not int condFive = isInside(triangle, point); // If current point lies inside // given triangle as well as inside // any of the four obtained triangles if ((condOne || condTwo || condThree || condFour) && condFive) ans += 1; } // Print the count of points cout << ans; } // Driver Code int main() { vector<vector< int >> rectangle = {{6, 5}, {2, 2}, {2, 1}, {5, 5}}; vector<vector< int >> points = {{1, 1}, {6, 1}, {6, 6}, {1, 6}}; vector<vector< int >> triangle = {{4, 4}, {0, 4}, {0, -2}}; countPoints(points, triangle, rectangle); return 0; } // This code is contributed by mohit kumar 29. |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Function to calculate area of a triangle static int getArea( int x1, int y1, int x2, int y2, int x3, int y3) { // Return the resultant area return Math.abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2 ); } // Function to check if a point // lies inside a triangle or not static int isInside(ArrayList<ArrayList<Integer>> triangle, ArrayList<Integer> point) { ArrayList<Integer> A = triangle.get( 0 ); ArrayList<Integer> B = triangle.get( 1 ); ArrayList<Integer> C = triangle.get( 2 ); int x = point.get( 0 ); int y = point.get( 1 ); // Calculate area of triangle ABC int ABC = getArea(A.get( 0 ), A.get( 1 ), B.get( 0 ), B.get( 1 ), C.get( 0 ), C.get( 1 )); // Calculate area of triangle // formed by connecting B, C, point int BPC = getArea(x, y, B.get( 0 ), B.get( 1 ), C.get( 0 ), C.get( 1 )); // Calculate area of triangle // formed by connecting A, C, point int APC = getArea(A.get( 0 ), A.get( 1 ), x, y, C.get( 0 ), C.get( 1 )); // Calculate area of triangle // formed by connecting A, B, point int APB = getArea(A.get( 0 ), A.get( 1 ), B.get( 0 ), B.get( 1 ), x, y); // Check if the sum of the areas of // above three triangles the same as ABC return ABC == (APC + APB + BPC) ? 1 : 0 ; } // Function to count the number of points // lying inside a triangle & rectangle static void countPoints(ArrayList<ArrayList<Integer>> rectangle, ArrayList<ArrayList<Integer>> triangle, ArrayList<ArrayList<Integer>> points) { // Stores the coordinates of the // vertices of the triangles int n = rectangle.size(); ArrayList<ArrayList<Integer>> triangle1 = new ArrayList<ArrayList<Integer>>(); for ( int i = 1 ; i < n; i++) triangle1.add(rectangle.get(i)); ArrayList<ArrayList<Integer>> triangle2 = new ArrayList<ArrayList<Integer>>(); for ( int i = 0 ; i < 3 ; i++) { triangle2.add(rectangle.get(i)); } ArrayList<ArrayList<Integer>> triangle3 = new ArrayList<ArrayList<Integer>>(); for ( int i = 0 ; i < 2 ; i++) { triangle3.add(rectangle.get(i)); } triangle3.add(rectangle.get( 3 )); ArrayList<ArrayList<Integer>> triangle4 = new ArrayList<ArrayList<Integer>>(); for ( int i = n - 2 ; i < n; i++) { triangle4.add(rectangle.get(i)); } triangle4.add(rectangle.get( 0 )); // Stores the number of points lying // inside the triangle and rectangle int ans = 0 ; // Traverse the array of points for (ArrayList<Integer> point:points) { // Stores whether the current point // lies inside triangle1 or not int condOne = isInside(triangle1, point); // Stores whether the current point // lies inside triangle2 or not int condTwo = isInside(triangle2, point); // Stores whether the current point // lies inside triangle3 or not int condThree = isInside(triangle3, point); // Stores whether the current point // lies inside triangle4 or not int condFour = isInside(triangle4, point); // Stores whether the current point // lies inside given triangle or not int condFive = isInside(triangle, point); // If current point lies inside // given triangle as well as inside // any of the four obtained triangles if ((condOne != 0 || condTwo != 0 || condThree != 0 || condFour != 0 ) && condFive != 0 ) ans += 1 ; } // Print the count of points System.out.println(ans); } // Driver Code public static void main (String[] args) { ArrayList<ArrayList<Integer>> rectangle = new ArrayList<ArrayList<Integer>>(); ArrayList<ArrayList<Integer>> points = new ArrayList<ArrayList<Integer>>(); ArrayList<ArrayList<Integer>> triangle = new ArrayList<ArrayList<Integer>>(); rectangle.add( new ArrayList<Integer>(Arrays.asList( 6 , 5 ))); rectangle.add( new ArrayList<Integer>(Arrays.asList( 2 , 2 ))); rectangle.add( new ArrayList<Integer>(Arrays.asList( 2 , 1 ))); rectangle.add( new ArrayList<Integer>(Arrays.asList( 5 , 5 ))); points.add( new ArrayList<Integer>(Arrays.asList( 1 , 1 ))); points.add( new ArrayList<Integer>(Arrays.asList( 6 , 1 ))); points.add( new ArrayList<Integer>(Arrays.asList( 6 , 6 ))); points.add( new ArrayList<Integer>(Arrays.asList( 1 , 6 ))); triangle.add( new ArrayList<Integer>(Arrays.asList( 4 , 4 ))); triangle.add( new ArrayList<Integer>(Arrays.asList( 0 , 4 ))); triangle.add( new ArrayList<Integer>(Arrays.asList( 0 , - 2 ))); countPoints(points, triangle, rectangle); } } // This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 program for the above approach # Function to calculate area of a triangle def getArea(x1, y1, x2, y2, x3, y3): # Return the resultant area return abs ((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2 ) # Function to check if a point # lies inside a triangle or not def isInside(triangle, point): A, B, C = triangle x, y = point # Calculate area of triangle ABC ABC = getArea(A[ 0 ], A[ 1 ], B[ 0 ], B[ 1 ], C[ 0 ], C[ 1 ]) # Calculate area of triangle # formed by connecting B, C, point BPC = getArea(x, y, B[ 0 ], B[ 1 ], C[ 0 ], C[ 1 ]) # Calculate area of triangle # formed by connecting A, C, point APC = getArea(A[ 0 ], A[ 1 ], x, y, C[ 0 ], C[ 1 ]) # Calculate area of triangle # formed by connecting A, B, point APB = getArea(A[ 0 ], A[ 1 ], B[ 0 ], B[ 1 ], x, y) # Check if the sum of the areas of # above three triangles the same as ABC return ABC = = (APC + APB + BPC) # Function to count the number of points # lying inside a triangle & rectangle def countPoints(rectangle, triangle, points): # Stores the coordinates of the # vertices of the triangles triangle1 = rectangle[ 1 :] triangle2 = rectangle[: 3 ] triangle3 = rectangle[: 2 ] triangle3.append(rectangle[ 3 ]) triangle4 = rectangle[ - 2 :] triangle4.append(rectangle[ 0 ]) # Stores the number of points lying # inside the triangle and rectangle ans = 0 # Traverse the array of points for point in points: # Stores whether the current point # lies inside triangle1 or not condOne = isInside(triangle1, point) # Stores whether the current point # lies inside triangle2 or not condTwo = isInside(triangle2, point) # Stores whether the current point # lies inside triangle3 or not condThree = isInside(triangle3, point) # Stores whether the current point # lies inside triangle4 or not condFour = isInside(triangle4, point) # Stores whether the current point # lies inside given triangle or not condFive = isInside(triangle, point) # If current point lies inside # given triangle as well as inside # any of the four obtained triangles if (condOne or condTwo or condThree \ or condFour) and condFive: ans + = 1 # Print the count of points print (ans) # Driver Code rectangle = [[ 6 , 5 ], [ 2 , 2 ], [ 2 , 1 ], [ 5 , 5 ]] points = [[ 1 , 1 ], [ 6 , 1 ], [ 6 , 6 ], [ 1 , 6 ]] triangle = [[ 4 , 4 ], [ 0 , 4 ], [ 0 , - 2 ]] countPoints(points, triangle, rectangle) |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG { // Function to calculate area of a triangle static int getArea( int x1, int y1, int x2, int y2, int x3, int y3) { // Return the resultant area return Math.Abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2); } // Function to check if a point // lies inside a triangle or not static int isInside(List<List< int >> triangle, List< int > point) { List< int > A = triangle[0]; List< int > B = triangle[1]; List< int > C = triangle[2]; int x = point[0]; int y = point[1]; // Calculate area of triangle ABC int ABC = getArea(A[0], A[1], B[0], B[1], C[0], C[1]); // Calculate area of triangle // formed by connecting B, C, point int BPC = getArea(x, y, B[0], B[1], C[0], C[1]); // Calculate area of triangle // formed by connecting A, C, point int APC = getArea(A[0], A[1], x, y, C[0], C[1]); // Calculate area of triangle // formed by connecting A, B, point int APB = getArea(A[0], A[1], B[0], B[1], x, y); // Check if the sum of the areas of // above three triangles the same as ABC return ABC == (APC + APB + BPC) ? 1 :0; } // Function to count the number of points // lying inside a triangle & rectangle static void countPoints(List<List< int >> rectangle, List<List< int >> triangle, List<List< int >> points) { // Stores the coordinates of the // vertices of the triangles int n = rectangle.Count; List<List< int >> triangle1 = new List<List< int >>(); for ( int i = 1; i < n; i++) triangle1.Add(rectangle[i]); List<List< int >> triangle2 = new List<List< int >>(); for ( int i = 0; i < 3; i++) { triangle2.Add(rectangle[i]); } List<List< int >> triangle3 = new List<List< int >>(); for ( int i = 0; i < 2; i++) { triangle3.Add(rectangle[i]); } triangle3.Add(rectangle[3]); List<List< int >> triangle4 = new List<List< int >>(); for ( int i = n - 2; i < n; i++) { triangle4.Add(rectangle[i]); } triangle4.Add(rectangle[0]); // Stores the number of points lying // inside the triangle and rectangle int ans = 0; // Traverse the array of points foreach (List< int > point in points) { // Stores whether the current point // lies inside triangle1 or not int condOne = isInside(triangle1, point); // Stores whether the current point // lies inside triangle2 or not int condTwo = isInside(triangle2, point); // Stores whether the current point // lies inside triangle3 or not int condThree = isInside(triangle3, point); // Stores whether the current point // lies inside triangle4 or not int condFour = isInside(triangle4, point); // Stores whether the current point // lies inside given triangle or not int condFive = isInside(triangle, point); // If current point lies inside // given triangle as well as inside // any of the four obtained triangles if ((condOne != 0 || condTwo != 0 || condThree != 0 || condFour != 0) && condFive != 0) ans += 1; } // Print the count of points Console.WriteLine(ans); } // Driver Code static public void Main () { List<List< int >> rectangle = new List<List< int >>(); List<List< int >> points = new List<List< int >>(); List<List< int >> triangle = new List<List< int >>(); rectangle.Add( new List< int >(){6, 5}); rectangle.Add( new List< int >(){2, 2}); rectangle.Add( new List< int >(){2, 1}); rectangle.Add( new List< int >(){5, 5}); points.Add( new List< int >(){1, 1}); points.Add( new List< int >(){6, 1}); points.Add( new List< int >(){6, 6}); points.Add( new List< int >(){1, 6}); triangle.Add( new List< int >(){4, 4}); triangle.Add( new List< int >(){0, 4}); triangle.Add( new List< int >(){0, -2}); countPoints(points, triangle, rectangle); } } // This code is contributed by rag2127 |
Javascript
<script> // Javascript program for the above approach // Function to calculate area of a triangle function getArea(x1,y1,x2,y2,x3,y3) { // Return the resultant area return Math.abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2); } // Function to check if a point // lies inside a triangle or not function isInside(triangle,point) { let A = triangle[0]; let B = triangle[1]; let C = triangle[2]; let x = point[0]; let y = point[1]; // Calculate area of triangle ABC let ABC = getArea(A[0], A[1], B[0], B[1], C[0], C[1]); // Calculate area of triangle // formed by connecting B, C, point let BPC = getArea(x, y, B[0], B[1], C[0], C[1]); // Calculate area of triangle // formed by connecting A, C, point let APC = getArea(A[0], A[1], x, y, C[0], C[1]); // Calculate area of triangle // formed by connecting A, B, point let APB = getArea(A[0], A[1], B[0], B[1], x, y); // Check if the sum of the areas of // above three triangles the same as ABC return ABC == (APC + APB + BPC) ? 1 :0; } // Function to count the number of points // lying inside a triangle & rectangle function countPoints(rectangle,triangle,points) { // Stores the coordinates of the // vertices of the triangles let n = rectangle.length; let triangle1 = []; for (let i = 1; i < n; i++) triangle1.push(rectangle[i]); let triangle2 = []; for (let i = 0; i < 3; i++) { triangle2.push(rectangle[i]); } let triangle3 = []; for (let i = 0; i < 2; i++) { triangle3.push(rectangle[i]); } triangle3.push(rectangle[3]); let triangle4 = []; for (let i = n - 2; i < n; i++) { triangle4.push(rectangle[i]); } triangle4.push(rectangle[0]); // Stores the number of points lying // inside the triangle and rectangle let ans = 0; // Traverse the array of points for (let point=0;point<points.length;point++) { // Stores whether the current point // lies inside triangle1 or not let condOne = isInside(triangle1, points[point]); // Stores whether the current point // lies inside triangle2 or not let condTwo = isInside(triangle2, points[point]); // Stores whether the current point // lies inside triangle3 or not let condThree = isInside(triangle3, points[point]); // Stores whether the current point // lies inside triangle4 or not let condFour = isInside(triangle4, points[point]); // Stores whether the current point // lies inside given triangle or not let condFive = isInside(triangle, points[point]); // If current point lies inside // given triangle as well as inside // any of the four obtained triangles if ((condOne != 0 || condTwo != 0 || condThree != 0 || condFour != 0) && condFive != 0) ans += 1; } // Print the count of points document.write(ans+ "<br>" ); } // Driver Code let rectangle =[]; let points = []; let triangle = []; rectangle.push([6, 5]); rectangle.push([2, 2]); rectangle.push([2, 1]); rectangle.push([5, 5]); points.push([1, 1]); points.push([6, 1]); points.push([6, 6]); points.push([1, 6]); triangle.push([4, 4]); triangle.push([0, 4]); triangle.push([0, -2]); countPoints(points, triangle, rectangle); // This code is contributed by patel2127 </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!