Saturday, January 11, 2025
Google search engine
HomeData Modelling & AINumber of pairs of Array where the max and min of pair...

Number of pairs of Array where the max and min of pair is same as their indices

Given an array A[] of N  integers, the task is to calculate the total number of pairs of indices (i, j) satisfying the following conditions –

  • 1 ? i < j ? N
  • minimum(A[i], A[j]) = i
  • maximum(A[i], A[j]) = j

Note: 1-based indexing is considered.

Examples:

Input: N = 4, A[] = {1, 3, 2, 4}
Output: 2
Explanation: First pair of indices is (1, 4),  
As minimum(A[1], A[4]) = minimum(1, 4) = 1 and 
maximum(A[1], A[4]) = maximum(1, 4) = 4.
Similarly, second pair is (3, 2).

Input: N = 10, A[] = {5, 8, 2, 2, 1, 6, 7, 2, 9, 10}
Output: 8

Approach: The problem can be solved based on the following idea: 

The conditions given in the problem would be satisfied, if one of these two conditions holds :

  • 1st Type: A[i] = i and A[j] = j
  • 2nd Type: A[i] = j and A[j] = i

Say there are K such indices where A[i] = i. So, number of pairs satisfying the first condition is K * (K – 1) / 2.
The number of pairs satisfying the second condition can be simply counted by traversing through the array. 
i.e., checking if A[i] ? i and A[A[i]] = i.

Follow the steps mentioned below to implement the idea: 

  • Traverse through the array and find the position where the value and the position are same (say K).
  • Find the pairs of the first type mentioned above using the provided formula.
  • Now traverse again using and find the second type of pair following the mentioned method.

Below is the implementation of this approach:

C++




// C++ code for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count Number of pairs in
// array satisfying the given conditions
int countPairs(int N, int A[])
{
    // Variable to store the number of indices such
    // that their value is equal to their position
    int count = 0;
 
    // Variable to store the total number of pairs
    // following the given condition
    int answer = 0;
 
    for (int i = 0; i < N; i++) {
        if (A[i] == (i + 1)) {
            count++;
        }
    }
 
    // Pairs following the first condition
    answer += count * (count - 1) / 2;
 
    // Calculating number of pairs following
    // the second condition
    for (int i = 0; i < N; i++) {
        if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
            answer++;
        }
    }
 
    // Returning answer
    return answer;
}
 
// Driver Code
int main()
{
    int N = 4;
    int A[] = { 1, 3, 2, 4 };
 
    // Function call
    int answer = countPairs(N, A);
    cout << answer << endl;
    return 0;
}


Java




/*package whatever //do not write package name here */
import java.io.*;
 
class GFG {
 
  // Function to count Number of pairs in
  // array satisfying the given conditions
  static int countPairs(int N, int A[])
  {
     
    // Variable to store the number of indices such
    // that their value is equal to their position
    int count = 0;
 
    // Variable to store the total number of pairs
    // following the given condition
    int answer = 0;
 
    for (int i = 0; i < N; i++) {
      if (A[i] == (i + 1)) {
        count++;
      }
    }
 
    // Pairs following the first condition
    answer += count * (count - 1) / 2;
 
    // Calculating number of pairs following
    // the second condition
    for (int i = 0; i < N; i++) {
      if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
        answer++;
      }
    }
 
    // Returning answer
    return answer;
  }
 
  public static void main (String[] args)
  {
 
    int N = 4;
    int A[] = { 1, 3, 2, 4 };
 
    // Function call
    int answer = countPairs(N, A);
    System.out.println(answer);
  }
}
 
// This code is contributed by aadityapburujwale


Python3




# Python3 code for the above approach
 
# Function to count Number of pairs
# in array satisfying the given conditions
def countpairs(n,a)->int:
   
    # Variable to store the number of indices
    # such that their value is equal to their position
    count = 0
     
    # Variable to store the total number
    # of pairs following the given condition
    answer = 0
 
    for i in range(0,n):
        if(a[i] == i+1):
            count += 1
     
    # Pairs following the first condition
    answer += ((count)*(count-1))//2
 
    # Calculating number of pairs following the second condition
    for i in range(0,n):
        if(a[i] > (i+1) and a[a[i]-1] == (i+1)):
            answer += 1
     
    # Returning answer
    return answer
 
# Driver Code
if __name__ == '__main__':
    n = 4
    a = [1,3,2,4]
     
    # Function call
    ans = countpairs(n,a)
    print(ans)
     
    # This code is contributed by ajaymakvana.


C#




// C# program for above approach
using System;
class GFG
{
 
  // Function to count Number of pairs in
  // array satisfying the given conditions
  static int countPairs(int N, int[] A)
  {
     
    // Variable to store the number of indices such
    // that their value is equal to their position
    int count = 0;
 
    // Variable to store the total number of pairs
    // following the given condition
    int answer = 0;
 
    for (int i = 0; i < N; i++) {
      if (A[i] == (i + 1)) {
        count++;
      }
    }
 
    // Pairs following the first condition
    answer += count * (count - 1) / 2;
 
    // Calculating number of pairs following
    // the second condition
    for (int i = 0; i < N; i++) {
      if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
        answer++;
      }
    }
 
    // Returning answer
    return answer;
  }
 
// Driver Code
public static void Main()
{
    int N = 4;
    int[] A = { 1, 3, 2, 4 };
 
    // Function call
    int answer = countPairs(N, A);
    Console.Write(answer);
}
}
 
// This code is contributed by code_hunt.


Javascript




<script>
// Javascript  code for the above approach
 
// Function to count Number of pairs in
// array satisfying the given conditions
function countPairs( N,A)
{
    // Variable to store the number of indices such
    // that their value is equal to their position
    let count = 0;
 
    // Variable to store the total number of pairs
    // following the given condition
    let answer = 0;
 
    for (let i = 0; i < N; i++) {
        if (A[i] == (i + 1)) {
            count++;
        }
    }
 
    // Pairs following the first condition
    answer += count * (count - 1) / 2;
 
    // Calculating number of pairs following
    // the second condition
    for ( let i = 0; i < N; i++) {
        if (A[i] > (i + 1) && A[A[i] - 1] == (i + 1)) {
            answer++;
        }
    }
 
    // Returning answer
    return answer;
}
 
// Driver Code
 
    let N = 4;
    let A = [ 1, 3, 2, 4 ];
 
    // Function call
    let answer = countPairs(N, A);
    document.write(answer);
     
    // This code is contributed by satwik4409.
    </script>


Output

2

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
25 Aug, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments