Thursday, October 9, 2025
HomeData Modelling & AINumber of pairs in an array having sum equal to product

Number of pairs in an array having sum equal to product

Given an array arr[], the task is to find the number of pairs (arr[i], arr[j]) in the array such that arr[i] + arr[j] = arr[i] * arr[j]
Examples: 

Input: arr[] = {2, 2, 3, 4, 6} 
Output:
(2, 2) is the only possible pair as (2 + 2) = (2 * 2) = 4.
Input: arr[] = {1, 2, 3, 4, 5} 
Output:

Approach: The only possible pairs of integers that will satisfy the given conditions are (0, 0) and (2, 2). So the task now is to count the number of 0s and 2s in the array and store them in cnt0 and cnt2 respectively and then the required count will be (cnt0 * (cnt0 – 1)) / 2 + (cnt2 * (cnt2 – 1)) / 2.
Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of the required pairs
int sumEqualProduct(int a[], int n)
{
    int zero = 0, two = 0;
 
    // Find the count of 0s
    // and 2s in the array
    for (int i = 0; i < n; i++) {
        if (a[i] == 0) {
            zero++;
        }
        if (a[i] == 2) {
            two++;
        }
    }
 
    // Find the count of required pairs
    int cnt = (zero * (zero - 1)) / 2
              + (two * (two - 1)) / 2;
 
    // Return the count
    return cnt;
}
 
// Driver code
int main()
{
    int a[] = { 2, 2, 3, 4, 2, 6 };
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << sumEqualProduct(a, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG {
    // Function to return the count
    // of the required pairs
    static int sumEqualProduct(int a[], int n)
    {
        int zero = 0, two = 0;
 
        // Find the count of 0s
        // and 2s in the array
        for (int i = 0; i < n; i++) {
            if (a[i] == 0) {
                zero++;
            }
            if (a[i] == 2) {
                two++;
            }
        }
 
        // Find the count of required pairs
        int cnt = (zero * (zero - 1)) / 2
                  + (two * (two - 1)) / 2;
 
        // Return the count
        return cnt;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int a[] = { 2, 2, 3, 4, 2, 6 };
        int n = a.length;
 
        System.out.print(sumEqualProduct(a, n));
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python 3 implementation of the approach
 
# Function to return the count
# of the required pairs
def sumEqualProduct(a, n):
    zero = 0
    two = 0
     
    # Find the count of 0s
    # and 2s in the array
    for i in range(n):
        if a[i] == 0:
            zero += 1
        if a[i] == 2:
            two += 1
             
    # Find the count of required pairs
    cnt = (zero * (zero - 1)) // 2 + \
            (two * (two - 1)) // 2
     
    # Return the count
    return cnt
     
# Driver code
a = [ 2, 2, 3, 4, 2, 6 ]
n = len(a)
 
print(sumEqualProduct(a, n))
 
# This code is contributed by Ankit kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the count
// of the required pairs
static int sumEqualProduct(int []a, int n)
{
    int zero = 0, two = 0;
 
    // Find the count of 0s
    // and 2s in the array
    for (int i = 0; i < n; i++)
    {
        if (a[i] == 0)
        {
            zero++;
        }
        if (a[i] == 2)
        {
            two++;
        }
    }
 
    // Find the count of required pairs
    int cnt = (zero * (zero - 1)) / 2 +
               (two * (two - 1)) / 2;
 
    // Return the count
    return cnt;
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 2, 2, 3, 4, 2, 6 };
    int n = a.Length;
 
    Console.Write(sumEqualProduct(a, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of the required pairs
function sumEqualProduct(a, n)
{
    var zero = 0, two = 0;
 
    // Find the count of 0s
    // and 2s in the array
    for (var i = 0; i < n; i++) {
        if (a[i] == 0) {
            zero++;
        }
        if (a[i] == 2) {
            two++;
        }
    }
 
    // Find the count of required pairs
    var cnt = (zero * (zero - 1)) / 2
              + (two * (two - 1)) / 2;
 
    // Return the count
    return cnt;
}
 
// Driver code
var a = [2, 2, 3, 4, 2, 6];
var n = a.length;
document.write( sumEqualProduct(a, n));
 
// This code is contributed by importantly.
</script>


Output: 

3

 

Time Complexity : O(N)

Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32348 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7095 POSTS0 COMMENTS
Thapelo Manthata
6791 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS