Friday, January 10, 2025
Google search engine
HomeData Modelling & AINumber of pair of positions in matrix which are not accessible

Number of pair of positions in matrix which are not accessible

Given a positive integer N. Consider a matrix of N X N. No cell can be accessible from any other cell, except the given pair cell in the form of (x1, y1), (x2, y2) i.e there is a path (accessible) between (x2, y2) to (x1, y1). The task is to find the count of pairs (a1, b1), (a2, b2) such that cell (a2, b2) is not accessible from (a1, b1).

Examples: 

Input : N = 2
Allowed path 1: (1, 1) (1, 2)
Allowed path 2: (1, 2) (2, 2)
Output : 6
Cell (2, 1) is not accessible from any cell
and no cell is accessible from it.

(1, 1) - (2, 1)
(1, 2) - (2, 1)
(2, 2) - (2, 1)
(2, 1) - (1, 1)
(2, 1) - (1, 2)
(2, 1) - (2, 2)

Consider each cell as a node, numbered from 1 to N*N. Each cell (x, y) can be map to number using (x – 1)*N + y. Now, consider each given allowed path as an edge between nodes. This will form a disjoint set of the connected component. Now, using Depth First Traversal or Breadth First Traversal, we can easily find the number of nodes or size of a connected component, say x. Now, count of non-accessible paths are x*(N*N – x). This way we can find non-accessible paths for each connected path.

Below is implementation of this approach: 

C++




// C++ program to count number of pair of positions
// in matrix which are not accessible
#include<bits/stdc++.h>
using namespace std;
 
// Counts number of vertices connected in a component
// containing x. Stores the count in k.
void dfs(vector<int> graph[], bool visited[],
                               int x, int *k)
{
    for (int i = 0; i < graph[x].size(); i++)
    {
        if (!visited[graph[x][i]])
        {
            // Incrementing the number of node in
            // a connected component.
            (*k)++;
 
            visited[graph[x][i]] = true;
            dfs(graph, visited, graph[x][i], k);
        }
    }
}
 
// Return the number of count of non-accessible cells.
int countNonAccessible(vector<int> graph[], int N)
{
    bool visited[N*N + N];
    memset(visited, false, sizeof(visited));
 
    int ans = 0;
    for (int i = 1; i <= N*N; i++)
    {
        if (!visited[i])
        {
            visited[i] = true;
 
            // Initialize count of connected
            // vertices found by DFS starting
            // from i.
            int k = 1;
            dfs(graph, visited, i, &k);
 
            // Update result
            ans += k * (N*N - k);
        }
    }
    return ans;
}
 
// Inserting the edge between edge.
void insertpath(vector<int> graph[], int N, int x1,
                             int y1, int x2, int y2)
{
    // Mapping the cell coordinate into node number.
    int a = (x1 - 1) * N + y1;
    int b = (x2 - 1) * N + y2;
 
    // Inserting the edge.
    graph[a].push_back(b);
    graph[b].push_back(a);
}
 
// Driven Program
int main()
{
    int N = 2;
 
    vector<int> graph[N*N + 1];
 
    insertpath(graph, N, 1, 1, 1, 2);
    insertpath(graph, N, 1, 2, 2, 2);
 
    cout << countNonAccessible(graph, N) << endl;
    return 0;
}


Java




// Java program to count number of
// pair of positions in matrix
// which are not accessible
import java.util.*;
@SuppressWarnings("unchecked")
class GFG {
 
    static int k;
 
    // Counts number of vertices connected
    // in a component containing x.
    // Stores the count in k.
    static void dfs(Vector<Integer> graph[],
                    boolean visited[], int x)
    {
        for (int i = 0; i < graph[x].size(); i++) {
            if (!visited[graph[x].get(i)]) {
                // Incrementing the number of node in
                // a connected component.
                (k)++;
 
                visited[graph[x].get(i)] = true;
                dfs(graph, visited, graph[x].get(i));
            }
        }
    }
 
    // Return the number of count of non-accessible cells.
    static int countNonAccessible(Vector<Integer> graph[],
                                  int N)
    {
        boolean[] visited = new boolean[N * N + N];
 
        int ans = 0;
        for (int i = 1; i <= N * N; i++) {
             
              k = 0;
            if (!visited[i]) {
                visited[i] = true;
 
                // Initialize count of connected
                // vertices found by DFS starting
                // from i.
                k++;
                dfs(graph, visited, i);
 
                // Update result
                ans += k * (N * N - k);
            }
        }
        return ans;
    }
 
    // Inserting the edge between edge.
    static void insertpath(Vector<Integer> graph[], int N,
                           int x1, int y1, int x2, int y2)
    {
        // Mapping the cell coordinate into node number.
        int a = (x1 - 1) * N + y1;
        int b = (x2 - 1) * N + y2;
 
        // Inserting the edge.
        graph[a].add(b);
        graph[b].add(a);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int N = 2;
 
        Vector<Integer>[] graph = new Vector[N * N + 1];
        for (int i = 1; i <= N * N; i++)
            graph[i] = new Vector<Integer>();
        insertpath(graph, N, 1, 1, 1, 2);
        insertpath(graph, N, 2, 1, 2, 2);
 
        System.out.println(countNonAccessible(graph, N));
    }
}
 
// This code is contributed by 29AjayKumar
// This code is corrected by Prithi_Dey


Python3




# Python3 program to count number of pair of
# positions in matrix which are not accessible
 
# Counts number of vertices connected in a
# component containing x. Stores the count in k.
def dfs(graph,visited, x, k):
    for i in range(len(graph[x])):
        if (not visited[graph[x][i]]):
             
            # Incrementing the number of node 
            # in a connected component.
            k[0] += 1
 
            visited[graph[x][i]] = True
            dfs(graph, visited, graph[x][i], k)
 
# Return the number of count of
# non-accessible cells.
def countNonAccessible(graph, N):
    visited = [False] * (N * N + N)
 
    ans = 0
    for i in range(1, N * N + 1):
        if (not visited[i]):
            visited[i] = True
 
            # Initialize count of connected
            # vertices found by DFS starting
            # from i.
            k = [1]
            dfs(graph, visited, i, k)
 
            # Update result
            ans += k[0] * (N * N - k[0])
    return ans
 
# Inserting the edge between edge.
def insertpath(graph, N, x1, y1, x2, y2):
     
    # Mapping the cell coordinate
    # into node number.
    a = (x1 - 1) * N + y1
    b = (x2 - 1) * N + y2
 
    # Inserting the edge.
    graph[a].append(b)
    graph[b].append(a)
 
# Driver Code
if __name__ == '__main__':
 
    N = 2
 
    graph = [[] for i in range(N*N + 1)]
 
    insertpath(graph, N, 1, 1, 1, 2)
    insertpath(graph, N, 1, 2, 2, 2)
 
    print(countNonAccessible(graph, N))
 
# This code is contributed by PranchalK


C#




// C# program to count number of
// pair of positions in matrix
// which are not accessible
using System;
using System.Collections.Generic;
 
class GFG
{
static int k;
 
// Counts number of vertices connected
// in a component containing x.
// Stores the count in k.
static void dfs(List<int> []graph,
                bool []visited, int x)
{
    for (int i = 0; i < graph[x].Count; i++)
    {
        if (!visited[graph[x][i]])
        {
            // Incrementing the number of node in
            // a connected component.
            (k)++;
 
            visited[graph[x][i]] = true;
            dfs(graph, visited, graph[x][i]);
        }
    }
}
 
// Return the number of count
// of non-accessible cells.
static int countNonAccessible(List<int> []graph,
                                   int N)
{
    bool []visited = new bool[N * N + N];
 
    int ans = 0;
    for (int i = 1; i <= N * N; i++)
    {
        if (!visited[i])
        {
            visited[i] = true;
 
            // Initialize count of connected
            // vertices found by DFS starting
            // from i.
            int k = 1;
            dfs(graph, visited, i);
 
            // Update result
            ans += k * (N * N - k);
        }
    }
    return ans;
}
 
// Inserting the edge between edge.
static void insertpath(List<int> []graph,
                            int N, int x1, int y1,
                            int x2, int y2)
{
    // Mapping the cell coordinate into node number.
    int a = (x1 - 1) * N + y1;
    int b = (x2 - 1) * N + y2;
 
    // Inserting the edge.
    graph[a].Add(b);
    graph[b].Add(a);
}
 
// Driver Code
public static void Main(String []args)
{
    int N = 2;
 
    List<int>[] graph = new List<int>[N * N + 1];
    for (int i = 1; i <= N * N; i++)
        graph[i] = new List<int>();
    insertpath(graph, N, 1, 1, 1, 2);
    insertpath(graph, N, 1, 2, 2, 2);
 
    Console.WriteLine(countNonAccessible(graph, N));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// JavaScript program to count number of
// pair of positions in matrix
// which are not accessible
 
let k;
 
// Counts number of vertices connected
// in a component containing x.
// Stores the count in k.
function dfs(graph,visited,x)
{
    for (let i = 0; i < graph[x].length; i++)
    {
        if (!visited[graph[x][i]])
        {
            // Incrementing the number of node in
            // a connected component.
            (k)++;
   
            visited[graph[x][i]] = true;
            dfs(graph, visited, graph[x][i]);
        }
    }
}
 
// Return the number of count of non-accessible cells.
function countNonAccessible(graph,N)
{
    let visited = new Array(N * N + N);
   
    let ans = 0;
    for (let i = 1; i <= N * N; i++)
    {
        if (!visited[i])
        {
            visited[i] = true;
   
            // Initialize count of connected
            // vertices found by DFS starting
            // from i.
            let k = 1;
            dfs(graph, visited, i);
   
            // Update result
            ans += k * (N * N - k);
        }
    }
    return ans;
}
 
// Inserting the edge between edge.
function insertpath(graph,N,x1,y1,x2,y2)
{
    // Mapping the cell coordinate into node number.
    let a = (x1 - 1) * N + y1;
    let b = (x2 - 1) * N + y2;
   
    // Inserting the edge.
    graph[a].push(b);
    graph[b].push(a);
}
 
// Driver Code
let N = 2;
   
let graph = new Array(N * N + 1);
for (let i = 1; i <= N * N; i++)
    graph[i] = [];
insertpath(graph, N, 1, 1, 1, 2);
insertpath(graph, N, 1, 2, 2, 2);
 
document.write(countNonAccessible(graph, N));
 
 
// This code is contributed by rag2127
 
</script>


Output

6

Time Complexity : O(N * N).

Auxiliary Space: O(N × N)

This article is contributed by Anuj Chauhan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments