Thursday, October 23, 2025
HomeData Modelling & AINumber of loops of size k starting from a specific node

Number of loops of size k starting from a specific node

Given two positive integer n, k. Consider an undirected complete connected graph of n nodes in a complete connected graph. The task is to calculate the number of ways in which one can start from any node and return to it by visiting K nodes.

Examples:  

Input : n = 3, k = 3
Output : 2

Number of loops of size k starting from a specific node

Input : n = 4, k = 2
Output : 3

Lets f(n, k) be a function which return number of ways in which one can start from any node and return to it by visiting K nodes. 
If we start and end from one node, then we have K – 1 choices to make for the intermediate nodes since we have already chosen one node in the beginning. For each intermediate choice, you have n – 1 options. So, this will yield (n – 1)k – 1 but then we have to remove all the choices cause smaller loops, so we subtract f(n, k – 1)

So, recurrence relation becomes, 
f(n, k) = (n - 1)k - 1 - f(n, k - 1) with base case f(n, 2) = n - 1. 
On expanding, 
f(n, k) = (n - 1)k - 1 - (n - 1)k - 2 + (n - 1)k - 3 ..... (n - 1) (say eqn 1)
Dividing f(n, k) by (n - 1), 
f(n, k)/(n - 1) = (n - 1)k - 2 - (n - 1)k - 3 + (n - 1)k - 4 ..... 1 (say eqn 2)
On adding eqn 1 and eqn 2, 
f(n, k) + f(n, k)/(n - 1) = (n - 1)k - 1 + (-1)k 
f(n, k) * ( (n -1) + 1 )/(n - 1) = (n - 1)k - 1 + (-1)k
f(n, k) = \frac{(n-1)^{k} + (-1)^{k}(n-1)}{n}

Below is the implementation of this approach:

C++




// C++ Program to find number of cycles of length
// k in a graph with n nodes.
#include <bits/stdc++.h>
using namespace std;
 
// Return the Number of ways from a
// node to make a loop of size K in undirected
// complete connected graph of N nodes
int numOfways(int n, int k)
{
    int p = 1;
 
    if (k % 2)
        p = -1;
 
    return (pow(n - 1, k) + p * (n - 1)) / n;
}
 
// Driven Program
int main()
{
    int n = 4, k = 2;
    cout << numOfways(n, k) << endl;
    return 0;
}


Java




// Java Program to find number of
// cycles of length k in a graph
// with n nodes.
public class GFG {
     
    // Return the Number of ways
    // from a node to make a loop
    // of size K in undirected
    // complete connected graph of
    // N nodes
    static int numOfways(int n, int k)
    {
        int p = 1;
     
        if (k % 2 != 0)
            p = -1;
     
        return (int)(Math.pow(n - 1, k)
                    + p * (n - 1)) / n;
    }
     
    // Driver code
    public static void main(String args[])
    {
        int n = 4, k = 2;
     
        System.out.println(numOfways(n, k));
    }
}
 
// This code is contributed by Sam007.


Python3




# python Program to find number of
# cycles of length k in a graph
# with n nodes.
 
# Return the Number of ways from a
# node to make a loop of size K in
# undirected complete connected
# graph of N nodes
def numOfways(n,k):
     
    p = 1
 
    if (k % 2):
        p = -1
 
    return (pow(n - 1, k) +
                   p * (n - 1)) / n
 
# Driver code
n = 4
k = 2
print (numOfways(n, k))
 
# This code is contributed by Sam007.


C#




// C# Program to find number of cycles
// of length k in a graph with n nodes.
using System;
 
class GFG {
     
    // Return the Number of ways from
    // a node to make a loop of size
    // K in undirected complete
    // connected graph of N nodes
    static int numOfways(int n, int k)
    {
        int p = 1;
     
        if (k % 2 != 0)
            p = -1;
     
        return (int)(Math.Pow(n - 1, k)
                     + p * (n - 1)) / n;
    }
     
    // Driver code
    static void Main()
    {
        int n = 4, k = 2;
         
        Console.Write( numOfways(n, k) );
    }
}
 
// This code is contributed by Sam007.


PHP




<?php
// PHP Program to find number
// of cycles of length
// k in a graph with n nodes.
 
// Return the Number of ways from a
// node to make a loop of size K
// in undirected complete connected
// graph of N nodes
function numOfways( $n, $k)
{
$p = 1;
 
if ($k % 2)
    $p = -1;
 
return (pow($n - 1, $k) +
        $p * ($n - 1)) / $n;
}
 
    // Driver Code
    $n = 4;
    $k = 2;
    echo numOfways($n, $k);
     
// This code is contributed by vt_m.
?>


Javascript




<script>
 
// JavaScript Program to find number of
// cycles of length k in a graph
// with n nodes.
 
    // Return the Number of ways
    // from a node to make a loop
    // of size K in undirected
    // complete connected graph of
    // N nodes
    function numOfways(n, k)
    {
        let p = 1;
       
        if (k % 2 != 0)
            p = -1;
       
        return (Math.pow(n - 1, k)
                    + p * (n - 1)) / n;
    }
  
// Driver code
         let n = 4, k = 2;
        document.write(numOfways(n, k));
     
    // This code is contributed by code_hunt.
</script>


Output

3
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS