Given two positive integer n, k. Consider an undirected complete connected graph of n nodes in a complete connected graph. The task is to calculate the number of ways in which one can start from any node and return to it by visiting K nodes.
Examples:
Input : n = 3, k = 3
Output : 2
Input : n = 4, k = 2
Output : 3
Lets f(n, k) be a function which return number of ways in which one can start from any node and return to it by visiting K nodes. If we start and end from one node, then we have K – 1 choices to make for the intermediate nodes since we have already chosen one node in the beginning. For each intermediate choice, you have n – 1 options. So, this will yield (n – 1)k – 1 but then we have to remove all the choices cause smaller loops, so we subtract f(n, k – 1).
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!